PreBAC

Maths 3

ENGLISH Solutions

DATE: January 30, 2023

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

EQUIPMENT AUTHORIZES:

Exam without technological support

SPECIFIC INSTRUCTIONS:

- It is essential that the answers be accompanied by the explanations necessary for their preparation.
- Responses should highlight the reasoning that leads to the results or solutions.
- When graphs are used to find a solution, the response should include sketches of them.
- Unless otherwise stated in the question, all points cannot be attributed to a correct answer in the absence of the reasoning and explanations that make it possible to arrive at the results or solutions.
- Where an answer is incorrect, however, part of the points may be awarded when an appropriate method and/or correct approach has been used.

	A function is defined	
	$f(x) = \frac{1}{3}x^3 - 3x^2 - 5x + 6$	
3)		
	Calculate the tangent equation for this function when $x = 0$	
	Solution:	
	y = mx + c or f(x) = f'(x)x $f(0) = \frac{1}{3}(0)^3 - 3(0)^2 - 5(0) + 6$	
	f(0) = 6 y = 6	5 points
	$f'(x) = \frac{1}{3} \cdot 3x^2 - 3 \cdot 2x - 5 \qquad \qquad f'(x) = x^2 - 6x - 5$	
	$f'(0) = (0)^2 - 6(0) - 5$	
	f'(0) = -5 or $m = -5$	
	y = mx + c or $f(x) = f'(x)x$	
	6 = -5(0) + c $c = 6$	
	Tanaent line is given by: y = -5x + 6	

Pre-BAC 2023 : MATHS 3 PERIODS

	Marc and Jeff play 4 tennis matches against each other. The probability of Marc winning a match is $\frac{1}{3}$. The results of each match are independent.	
6)	Calculate the probability that Marc will win exactly one of the 4 matches. Solution Probability of Marc winning is $\frac{1}{3}$ and Marc loosing is $\frac{2}{3}$ X is the probability of Marc winning Using the formula $P(X = k) = {n \choose k} p^k (1-p)^{n-k}$ n=4 k =1 $P(X = 1) = \frac{4!}{3! 1!} \cdot \left(\frac{1}{3}\right)^1 \left(\frac{2}{3}\right)^3$ $P(X = 1) = 4 \left(\frac{1}{3}\right) \left(\frac{8}{27}\right)$ P that Marc wins exactly one match is $\frac{32}{81}$	5 points

