PreBAC

Maths 3

ENGLISH Solutions

DATE: January 30, 2023

Total : /50 points

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

EQUIPMENT AUTHORIZES:

Exam without technological support

SPECIFIC INSTRUCTIONS:

- It is essential that the answers be accompanied by the explanations necessary for their preparation.
- Responses should highlight the reasoning that leads to the results or solutions.
- When graphs are used to find a solution, the response should include sketches of them.
- Unless otherwise stated in the question, all points cannot be attributed to a correct answer in the absence of the reasoning and explanations that make it possible to arrive at the results or solutions.
- Where an answer is incorrect, however, part of the points may be awarded when an appropriate method and/or correct approach has been used.

1)	A function is defined by $f(x)=k \cdot x^{2}-2 x \quad$ with $k \in \mathbb{R}$, any real number Calculate k, so that $f^{\prime}(1)=4$ Solution: $f^{\prime}(x)=2 . k \cdot x-2$ $f^{\prime}(1)=4$ therefore $2 . k \cdot(1)-2=4$ 2. $k=6$ $k=3$	5 points
2)	The curves in the diagram are graphs of a function and its derivative. Clearly determine and justify which curve is the function and which is its derivative. $C_{1} C_{2}$ Solution: c1 is a quadratic and c2 is a cubic; The cubic C2 has a higher order and so is the function; and C1 is the derivative. However we must check these 2 are actually linked to each other The turning points, max/min of C2 have the same x values as the intercepts of $c 1$. The gradient at the turning points is zero so the derivative function should have zeros at this point: hence it is the dervative The function $c 2$ has a positve slope $x<-1$ and $x>1$ it has a negative slope from $-1<x<1$ This matches when $c 1$ is positive and nagative	5 points

Pre-BAC 2023 : MATHS 3 PERIODS

3)	A function is defined $f(x)=\frac{1}{3} x^{3}-3 x^{2}-5 x+6$ Calculate the tangent equation for this function when $x=0$ Solution: $\begin{aligned} & y=m x+c \quad \text { or } \quad f(x)=f^{\prime}(x) x \\ & f(0)=\frac{1}{3}(0)^{3}-3(0)^{2}-5(0)+6 \\ & f(0)=6 \quad y=6 \\ & f^{\prime}(x)=\frac{1}{3} \cdot 3 x^{2}-3.2 x-5 \quad f^{\prime}(x)=x^{2}-6 x-5 \\ & f^{\prime}(0)=(0)^{2}-6(0)-5 \\ & f^{\prime}(0)=-5 \quad \text { or } m=-5 \\ & y=m x+c \quad \text { or } \quad f(x)=f^{\prime}(x) x \\ & 6=-5(0)+c \quad c=6 \end{aligned}$ Tangent line is given by: $\quad y=-5 x+6$	5 points

Match each of the equations ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E)
with their corresponding graphs ($1,2,3,4$ and 5),
$\mathrm{A}: y=2^{2 x}$
B: $y=-2^{x}$
C: $y=\ln x$
$\mathrm{D}: y=2^{-x+1}$
$\mathrm{E}: y=\ln (x+2)$
1.)

3.)
4)

5.)

2.)

4.)

Solutions:
$A=5$
$B=2$
C= 1
$\mathrm{D}=3$
$E=4$

The Graph shows a curve of the function defined by:

$$
f(x)=x^{2}+2 x+3
$$

A student wants to find an approximation of:

$$
\int_{-4}^{1} f(x) d x
$$

a) Explain, referring to the graph, what this notation means.
b) Using the graph, estimate this value by calculating pink rectangles.
c) Do you think this estimate is above or below the real value? Explain

Solution :

a) The symbol means an integral and to find the value of this integral between the values of $-4<x<1$, this is represented by the total area under the curve bounded by the lines $x=-4$ and $x=1$
b) Adding the rectangles $(11 \times 1)+(6 \times 1)+(3 \times 1)+(2 \times 1)+(3 \times 1)$ Integral has the value 25
c) This estimate is an over estimate as the area of rectangles above the line of the function is greater than the gaps not calculated under the curve. Approx 2 square units below not added and maybe as much as 4 squares over the line.

Pre-BAC 2023: MATHS 3 PERIODS

Marc and Jeff play 4 tennis matches against each other.
The probability of Marc winning a match is $\frac{1}{3}$.
The results of each match are independent.

Calculate the probability that Marc will win exactly one of the 4 matches.
Solution Probability of Marc winning is $\frac{1}{3}$ and Marc loosing is $\frac{2}{3}$
6) X is the probability of Marc winning

Using the formula $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \mathrm{n}=4 \quad \mathrm{k}=1$

$$
\begin{gathered}
P(X=1)=\frac{4!}{3!1!} \cdot\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{3} \\
P(X=1)=4\left(\frac{1}{3}\right)\left(\frac{8}{27}\right)
\end{gathered}
$$

P that Marc wins exactly one match is $\frac{32}{81}$

Pre-BAC 2023: MATHS 3 PERIODS

A survey of $80 \mathrm{S7}$ students about their choice of subject options showed that:

- 20 chose physics.
- 33 chose economics.
- 41 chose neither physics nor economics.
a) Plot the results of this survey using a Venn diagram or a double-entry table.
b) How many students chose physics or economics?
(c) A student is interviewed at random. Knowing that he chose physics, what is the probability that he also chose economics?

Solution : $P=$ Physics students $E=$ Economics students $U=80$
7)

Subject Studied	Economics	Not Economics	Totals
Physics	14	6	20
Not Physics	19	41	60
	33	47	80

B) $80-41=39$ So 39 Students choose physics or Economics
(should not be 25 as includes students who do both E and P)
C) 20 students chose physics and of those 14 do Economics

Therefore Probability of doing Economics; given that they student is taking physics is $\frac{14}{20}$ or $\frac{7}{10} \quad 0.7$ or 70%

Pre-BAC 2023 : MATHS 3 PERIODS

| | During the International Kite Festival, a stand organizes a contest to win a kite.
 There are 10 cards face down on the table, 7 are red and 3 are black.
 There is a six-sided die to roll.
 You win if you choose a red card and throw a 5.
 or if you choose a black card and throw an even number.
 a) Justify, by calculations, with which of these two possibilities one has the greatest
 probability of winning.
 b) Determine the total probability of winning the kite
 Solution :
 Probability of choosing a red card is $\frac{7}{10}$
 Probability of rolling a 5 is $\frac{1}{6}$
 Probability of choosing a red and rolling a 5 is $\frac{7}{10} \cdot \frac{1}{6}=\frac{7}{60}$ |
| :--- | :--- | :--- |
| Probability of choosing a black is $\frac{3}{10}$
 Probability of rolling an even number is $\frac{3}{6}$ or $\frac{1}{2}$
 Probability of choosing black and rolling even is $\frac{9}{60}$
 $\frac{9}{60}>\frac{7}{60} \quad$ So black card and even die number is more likely than Red card
 and 5 on the die
 B) The probability of winning is sum of 2 probabilities calculated above:
 $\frac{9}{60}+\frac{7}{60}=\frac{16}{60}$ or $\frac{4}{15}$ | points |

Pre-BAC 2023 : MATHS 3 PERIODS

Pre-BAC 2023 : MATHS 3 PERIODS

