MATHEMATICS 3 PERIODS
 PART B

ENGLISH version

DATE: Monday $30^{\text {th }}$ January 2023,

Total : 50 points

EXAM DURATION: 2 hours (120 minutes)

AUTHORISED EQUIPMENT:

Exam with technological support:
Calculator allowed
Pencil for graphics

SPECIAL NOTES:

- It is essential that the answers be accompanied by the explanations necessary for their preparation.
- Responses should highlight the reasoning that leads to the results or solutions.
- When graphs are used to find a solution, the answer should include sketches of them.
- Unless otherwise stated in the question, all points cannot be attributed to a correct answer in the absence of the reasoning and explanations that lead to the results or solutions.
- Where an answer is incorrect, however, part of the points may be awarded when an appropriate method and/or correct approach has been used.

PreBAC 2023: MATHS 3 PERIODES

a) E. coli bacteria are usually found in the lower intestines of humans and other warm-blooded organisms. They reproduce at a rate of 3.5% per minute.
Scientists observe a colony of 100000 bacteria at the beginning of the experiment.
Write the equations which would model the growth of E. coli bacteria in the form:

$$
f(t)=a \cdot b^{t}
$$

represents $f(t)$ the number of bacteria at a certain time t and t represents time in minutes.

Solution

$$
f(t)=100000 \cdot 1.035^{t}
$$

b) Bifidobacterium is the most common bacterium in the gut microbiome of infants. Some bifidobacteria are used as probiotics. We know from previous studies that a colony of bifidobacteria grows in the following pattern:

$$
g(t)=200000 \cdot 1,05^{t}
$$

$g(t)$ represents the number of bacteria at a certain time t t represents time in minutes.
i. Calculate the number of bifidobacteria when $t=0$ and $t=30$ to the nearest unit. $g(0)=200000 \cdot 1.05^{0}=200000$ There are 200000 bacteria at the start $g(30)=200000 \cdot 1.05^{30}=864388$ There are 864388 bacteria after 30 minutes
ii. Copy and complete this table and plot graph g for $0 \leq t \leq 5$ in an appropriate coordinate system.

t	0	1	2	3	4	5
$g(t)$	200000	210000	220500	231525	243101	255256

Axis labels ; $y=$ number of bacteria; $x=$ Time in minutes
iii. The experiment's nutrient solution can only accommodate 10 million bacteria.

Calculate when the colony reaches this number. The answer should be rounded to the nearest minute.

Solve $g(t)=200000 * 1.05^{t}$

Via logs
$10000000=200000 \cdot 1.05^{t}$
$\frac{10000000}{200000}=1,05^{t}$
$50=1,05^{t}$
$\log 50=\log 1.05^{t} \quad \log 50=t \log 1.05$
$\mathrm{t}=\frac{\log 50}{\log 1.05} \quad=80.18$
If logs rounded $=1.699 / 0.021=80.905$ ie 81 days

PreBAC 2023: MATHS 3 PERIODES

Graphically looking at intersection of $y=10000000$

The population of bacteria reaches 10000000 after 80 minutes
iv. Calculate the growth rate $\mathrm{g}^{\prime}(10)$ rounded to the integer and interpret the result in
the context of the exercise.

After 10 minutes the bacteria population is growing at a rate of 15895 bacteria per minute
c)

Bacterial disease of tomato fruit spots is caused by the bacterium Xanthomonas vesicatoria.
The infection causes brown spots on leaves and fruits and can lead to significant yield losses. We know from experience that the probability of a tomato plant being infected with the bacteria is 2.5%.

A farmer owns a small field with 500 tomato plants.
i. Indicate how many infected plants are expected to be found.

Solution $500 \times 0.025=12.5$
We would expect to find 13 infected plants.
ii. Calculate the probability that only 2% of tomato plants will be infected.
2% of plants is $500 \times 0.02=10$

$$
\begin{aligned}
& \text { Binomial Pdf } \mathrm{n}=500, \mathrm{p}=0.025 X=10 \\
& \quad P(X=10)=\binom{500}{10}(0.025)^{10}(1-0.025)^{490}
\end{aligned}
$$

binompdf(500,0.025,10) 0.09599804

iii. Calculate the probability that between 10 and 20 plants (including both numbers) will be infected.

Proabability of between 10 and 20
Binomial Cdf $X=20$ - Binomial Cdf $X=9$

Or method 2
Binomial Pdf add values of 10 through $20=0.786$

PreBAC 2023: MATHS 3 PERIODES

X	Y_{1}		
10	0.096		
11	0.1096		
12	0.1146		
13	0.1103		
14	0.0984		
15	0.0817		
16	0.0635		
17	0.0464		
18	0.0319		
19	0.0208		
20	0.0128		

PART B Question 2 : 28 points
The Town of Mickey-Town evaluates speeding data on local roads in relation to the number of educational radar signs installed. The following table shows the number of signs installed and speeding fines over the past six years:

number of educational radar signs (x)	2	3	6	10	12	13

PreBAC 2023: MATHS 3 PERIODES

a) Plot the table data in a scatterplot:
(Suggested scale on the x axis use 1 cm for a sign and on the y axis 1 cm for 20 fines starting the scale from 180).

b) Calculate the mean value \bar{x} of the number of signs over the six years.

Round to one decimal place

Z-Var Stats

$\bar{x}=7.666666667$

$\Sigma x=46$
$\Sigma x^{2}=462$
Sx=4.676180778
$\sigma x=4.268749492$
n=6
$\bar{y}=348.8333333$
Average number of signs $x=7.7$ over the
6 year period
(c) Calculate the mean value \bar{y} of the number of fines. Round to one decimal place

Average number of fine Y over the 6 years is 348.8
d) Draw the mean point (\bar{x}, \bar{y}) onto the graph and label it. (see graph above pt G)
(e) Give the values of σx and σy Round to one decimal place

Standard deviation of x is 4.3 and of y is 56.7

PreBAC 2023: MATHS 3 PERIODES

2-Var Stats

$\uparrow \sigma x=4.268749492$
n=6
$\overline{\mathrm{y}}=348.8333333$
$\Sigma y=2093$
$\Sigma y^{2}=749375$
S $9=62.07549167$
$\sigma y=56.66691176$
f) Calculate the linear correlation coefficient and explain whether a linear model
is appropriate or not.

LinReg

$y=a x+b$
$a=-13.25609756$
$b=450.4634146$
$r^{2}=0.9971801662$
$r=-0.9985890878$
$r=-0.9985$ which suggests a very strong negative linear
correlation, so yes the linear model is appropriate
g) Determine the equation of the line corresponding to the linear correlation fit. Using the least squares regression method.

In the form $y=a x+b$
Round the values of a and b to 2 decimal places.
$y=-13.26+450.46$
h) The company used the following linear regression equation $y=-13 x+450$, Use this to estimate the number of fines if there were 15 signs.
$y=-13(15)+450$
$y=-195+450$
$=255$
(i) The profit of the educational radar sign company is represented by the function:

$$
B(x)=\frac{x^{3}}{3}-16 x^{2}+220 x, \quad 0 \leq x \leq 18
$$

Where x is given in hundreds of radar signs produced. B is given in euros
i. What is the profit for selling 900 radar signs?

If 900 radar x is 9 because ($900 / 100=9$)

$$
B(9)={\frac{(9)^{3}}{3}}^{3}-16(9)^{2}+220(9)=927 \text { Euro }
$$

If they do B(900) correct 1 mark - 230238000 Euro
ii. How many radar signs does the company have to sell to make a profit of $800 €$?

Solve $800=\frac{x^{3}}{3}-16 x^{2}+220 x$ do this by looking at the intersection of the line $y=800$ and the function

The company must sell 576 radar to make 800 euro in profit
iii. What is the maximum profit the company can make?

The maximum profit is 933.33 euro
Found value for $X=18$ as maximum range - 720 euro (0.5)
iv. How many radar signs were made to get this maximum profit?
$X=10.000$ (x is in hundreds of units sold so 10×100)
This is when the number of radar sold is 1000
(j) A factory produces radars signs.

Each radar sign can have two defects that are called fault a and defect b.
A radar sign is chosen at random.
We note A the event "the radar has the defect a " and B the event "the radar has the defect b".

It is assumed that these two events are independent and that their probability is $\mathrm{P}(\mathrm{A})=0.02$ and $P(B)=0.01$.

The company consider a radar sign is defective when it has at least one of two defects.

PreBAC 2023: MATHS 3 PERIODES

i. Calculate the probability that the radar sign is not defective.

$$
\begin{aligned}
& A+B= \\
& \text { Aorly }=
\end{aligned}
$$

Burly

r fault
No defect $=0.980^{\circ} \times 0.99=0.97020 .99 \div \therefore$ tenet A fault B
ii. Knowing that the sampled radar sign is defective, calculate the probability that it has both defects.

Knowing that it is defective:
$P($ defect $)=1$ - no defect $\quad 1-0.9702=0.0298$
Probability it has both faults $=0.02 \times 0.01=0.0002$

$$
\frac{0.0002}{0.0298}=0.00671
$$

