

MATHEMATICS 3 PERIODS

PART B

ENGLISH version

DATE: Monday 30th January 2023,

Total :..... / 50 points

EXAM DURATION: 2 hours (120 minutes)

AUTHORISED EQUIPMENT:

Exam with technological support: Calculator allowed Pencil for graphics

SPECIAL NOTES:

- It is essential that the answers be accompanied by the explanations necessary for their preparation.
- Responses should highlight the reasoning that leads to the results or solutions.
- When graphs are used to find a solution, the answer should include sketches of them.
- Unless otherwise stated in the question, all points cannot be attributed to a correct answer in the absence of the reasoning and explanations that lead to the results or solutions.
- Where an answer is incorrect, however, part of the points may be awarded when an appropriate method and/or correct approach has been used.

	TUROFA		PART B C	uestion 1	: 22 points				Points
organis	ms. They re	are usually feproduce at a colony of a	a rate of 3.	5% per min	ute.			looded	
Write t	Write the equations which would model the growth of E. coli bacteria in the form:								
$f(t) = a \cdot b^t$									
represents $f(t)$ the number of bacteria at a certain time t and t represents time in minutes.									
	Soluti	on							
				f(t) = 100	000.1.03	5 ^t			/2
bifidoba	acteria are	i is the most used as prol ws in the fol	oiotics. We	know from	-			ne	
			g(t) =	= 200 000	• 1,05 ^t				
		sents the nu its time in m		cteria at a c	certain time	e t			
i.	Calcula	te the numb	er of bifido	bacteria wł	nen <i>t</i> = 0 an	d <i>t</i> = 30 to	the nearest	unit.	
g(0) =	$g(0) = 200\ 000 \cdot 1.05^0 = 200\ 000$ There are 200 000 bacteria at the start								10
$g(30) = 200\ 000 \cdot 1.05^{30} = 864\ 388$ There are 864 388 bacteria after 30 minutes							/4 (no unit -		
ii.	ii. Copy and complete this table and plot graph g for $0 \le t \le 5$ in an appropriate coordinate system.								1)
	t	0	1	2	3	4	5		
	g(t)	200 000	210 000	220 500	231 525	243 101	255 256		/4
								J	

PreBAC 2023: MATHS 3 PERIODES

The experiment's nutrient solution can only accommodate 10 million bacteria.
 Calculate when the colony reaches this number. The answer should be rounded to the nearest minute.

Solve $g(t) = 200\ 000 * 1.05^t$

Via logs

 $10\ 000\ 000 = 200\ 000 \cdot 1.05^t$

 $\frac{10\ 000\ 000}{200\ 000} = 1,05^t$

 $50 = 1,05^t$

 $log50 = log1.05^t \qquad log50 = tlog1.05$

$$t = \frac{\log 50}{\log 1.05} = 80.18$$

If logs rounded = 1.699/0.021 = 80.905 ie 81 days

2% of plants is $500 \times 0.02 = 10$

Binomial Pdf n= 500, p = 0.025 X = 10 $P(X = 10) = {\binom{500}{10}} (0.025)^{10} (1 - 0.025)^{490}$						
binompdf(500,0.025,10) 0.09599804						
iii. Calculate the probability that between 10 and 20 plants (including both numbers) will be infected.						
Proabability of between 10 and 20 Binomial Cdf X=20 – Binomial Cdf X=9						
9 0.198 10 0.294 11 0.4037 12 0.5183 13 0.6285 14 0.7269 15 0.8086 16 0.8721 17 0.9185 18 0.9504 19 0.9711						
20 0.9839						
Or method 2						
Binomial Pdf add values of 10 through $20 = 0.786$						

PreBAC 2023: MATHS 3 PERIODES

X	Y1
10	0.096
11	0.1096
12	0.1146
13	0.1103
14	0.0984
15	0.0817
16	0.0635
17	0.0464
18	0.0319
19	0.0208
20	0.0128

PART B Question 2 : 28 points							Point
own of Mickey-Tow ational radar signs in ding fines over the p	nstalled. T	he following					
number of educational radar signs (x)	2	3	6	10	12	13	
number of speeding fines (v)	425	406	375	320	292	275	

EVER SETE:
trace
trace
trace
v=348, 833333
Su=2093
Su=2093
Su=2093
Su=2093
Su=2007549167
g=sch.66691176
f) Calculate the linear correlation coefficient and explain whether a linear model
is appropriate or not.
SumEase
g=ax+b
a=-13, 25609756
b=450, 4634146
r=-0.9971801662
_r=-0.9971801662
_r=-0.9971801662
_r=-0.9985890878 r=-0.9985 which suggests a very strong negative linear
correlation, so yes the linear model is appropriate
g) Determine the equation of the line corresponding to the linear correlation fit. Using the
least squares regression method.
In the form
$$y = ax + b$$

Round the values of a and b to 2 decimal places.
y=-13.26 +450.46
h) The company used the following linear regression equation $y = -13x + 450$,
Use this to estimate the number of fines if there were 15 signs.
y=-195+450
= 255
(i) The profit of the educational radar sign company is represented by the function:
 $B(x) = \frac{x^3}{3} - 16x^2 + 220x$, $0 \le x \le 18$
Where x is given in hundreds of radar signs produced. B is given in euros
i. What is the profit for selling 900 radar signs?
if 900 radar x is 9 because (900/100 = 9)
 $B(9) = \frac{(9)^3}{3} - 16(9)^2 + 220(9) = 927 Euro$
If they do B(900) correct 1 mark - 230 238 000 Euro
ii. How many radar signs does the company have to sell to make a profit of 800 C?

PreBAC 2023: MATHS 3 PERIODES

