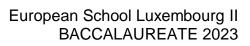


BAC

SUBJECT	MATHEMATICS 3p
TEACHER	Reynaud E.
DATE	30/1/2023
DURATION (in hours + in minutes)	2 hours (120 minutes)

AUTHORISED MATERIAL

Formula booklet	
No calculator allowed	


INSTRUCTIONS / SPECIAL REMARKS

Number all pages and the total number of pages submitted.

All answers must be supported by explanations.

If graphs are used to find a solution, they must be sketched as part of the answer.

Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been obtained.

PART A					
		Page 1/4	Marks		
S1	The figure opposite shows the graph Cf' of the derivative $f'(x)$ of the function $f(x)$. Use this graph to determine the intervals over which the function $f(x)$ is decreasing.		5		
S2	Determine the equation of the line tangent to the function $f(x) = 3x^2 - 11x$ at the point where the value of the instantaneous slope of the fu	nction is 1.	5		
S3	A small bag of lollipops is left in a classroom. Half of the lollipops are green, the rest are red. 10 pupils enter the classroom, pick a lollipop from the bag at random, one after the other, and eat it. Is picking a green lollipop in this context a Bernouilli process? Justify your answer.				
S4	European Union regulations prohibit airlines from refusing to tra people with reduced mobility solely because of their disability. In Luxembourg, it is estimated that around 1% of people with redu mobility use airline travel. It is assumed that the population flyin Luxembourg is large enough that the probability of selecting a p reduced mobility is constant. On an airline flight from Luxembourg to London, only two out of were reserved for persons with reduced mobility. Justify the air decision to limit the number of seats reserved for persons with r mobility to two.	n ced g out of erson with 150 seats line's	5		

PART A						
				Page 2/4	Marks	
S5	The value of a certain luxury wine is growing rapidly. The price for a single bottle can be modelled by the function: $f(t) = 1400 \cdot e^{\ln(1.10) \cdot t}$ where $f(t)$ is the price for a bottle in Euros and t is years after 2020.			3 2		
	Let <i>f</i> be the function defined by: $f(x) =$	$\ln(x)$				
	a) Give the domain of <i>f</i> .					
S6	b) Give the limit of f when x approaches $+\infty$.				1	
	c) Determine any intervals over which f is increasing or decreasing.				1.5	
	d) Give the inverse function of $f(x)$.				1.5	
S7	Let $f(x) > g(x)$ be two positive functio and $G(x)$. It is further known, that x F(x) G(x) Determine the area bounded by the gr	1 -3 2	4 8 6		5	
	of equations $x = 1$ and $x = 4$.				5	

PART A					
	Page 3/4	Marks			
S8	The graph of the function $y = f(x)$ is presented here:				
	Given the following results: $\int_{b}^{c} f(x)dx = 2,3 \qquad \int_{a}^{c} f(x)dx = -1,1 \qquad \int_{b}^{d} f(x)dx = -0,4$ calculate the value of the shaded area.	5			
S9	 The table below gathers the values of two variables x and y: x 0 2 4 6 8 10 y 6 7 10 14 15 20 a) Draw a scatter diagram using these values. b) Compute and add the mean point to your graph. 	3.5 1.5			

PART A					
Page 4/4					
State if the following sentences are True (T) or False (F) and justify your statements:					
	a) The point A (e;1) belongs to the function $y = \ln(x)$.				
S10	b) When a function is positive, its first derivative is necessarily		1		
	,	increasing.	5	1	
	c) Let f be a function defined by $f(x) = e^x - 1$. Its first derivative is equal to zero for $x = 0$.				
	d)	Let f be a function defined over \mathbb{R} such that $\int_0^3 f(x) \int_3^6 f(x) < 0$;)>0 and	1	
		We can thus write : $\int_0^6 f(x) = 0$		1	
	e)	A set of bivariate data points $(x; y)$ has a linear correlation coefficient of -0.95. We can thus state that the correlation			

Last page : always blank