BAC

SUBJECT
MATHEMATICS 3p

TEACHER
Reynaud E.

DATE
30/1/2023

DURATION (in hours + in minutes)
2 hours (120 minutes)

AUTHORISED MATERIAL

Formula booklet

No calculator allowed

INSTRUCTIONS / SPECIAL REMARKS

Number all pages and the total number of pages submitted.
All answers must be supported by explanations.
If graphs are used to find a solution, they must be sketched as part of the answer.
Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been obtained.

PART A

The figure opposite shows the graph $C f^{\prime}$ of the derivative $f^{\prime}(x)$ of the function $f(x)$.

Use this graph to determine the intervals over which the function $f(x)$ is decreasing.

	Page 1/4	Marks
S1	The figure opposite shows the graph $C f^{\prime}$ of the derivative $f^{\prime}(x)$ of the function $f(x)$. Use this graph to determine the intervals over which the function $f(x)$ is decreasing.	5
S2	Determine the equation of the line tangent to the function $f(x)=3 x^{2}-11 x$ at the point where the value of the instantaneous slope of the function is 1.	5
S3	A small bag of lollipops is left in a classroom. Half of the lollipops are green, the rest are red. 10 pupils enter the classroom, pick a lollipop from the bag at random, one after the other, and eat it. Is picking a green Iollipop in this context a Bernouilli process? Justify your answer.	5
S4	European Union regulations prohibit airlines from refusing to transport people with reduced mobility solely because of their disability. In Luxembourg, it is estimated that around 1% of people with reduced mobility use airline travel. It is assumed that the population flying out of Luxembourg is large enough that the probability of selecting a person with reduced mobility is constant. On an airline flight from Luxembourg to London, only two out of 150 seats were reserved for persons with reduced mobility. Justify the airline's decision to limit the number of seats reserved for persons with reduced mobility to two.	5

PART A				
			Page 2/4	Marks
S5	The value of a certain luxury wine is growing rapidly. The price for a single bottle can be modelled by the function: $f(t)=1400 \cdot e^{\ln (1.10) \cdot t}$ where $f(t)$ is the price for a bottle in Euros and t is years after 2020. a) Interpret the two numbers 1400 and 1.10 . b) Calculate the price of a bottle in 2021.			3 2
S6	Let f be the function defined by: $f(x)=\ln (x)$ a) Give the domain of f. b) Give the limit of f when x approaches $+\infty$. c) Determine any intervals over which f is increasing or decreasing. d) Give the inverse function of $f(x)$.			$\begin{gathered} 1 \\ 1 \\ 1.5 \\ 1.5 \end{gathered}$
S7	Let $f(x)>g(x)$ be two positive functions, with respective primitives $F(x)$ and $G(x)$. It is further known, that Determine the area bounded by the graphs of $f(x)$ and $g(x)$ and the lines of equations $x=1$ and $x=4$.			5

PART A	Page 4/4	Marks		
State if the following sentences are True (T) or False (F) and justify your statements:				
a) The point A (e;1) belongs to the function $y=\ln (x)$.	1			
b) When a function is positive, its first derivative is necessarily				
increasing.				c) Let f be a function defined by $f(x)=e^{x}-1$. Its first derivative is
:---				
equal to zero for $x=0$.				
d) Let f be a function defined over \mathbb{R} such that $\int_{0}^{3} f(x)>0$ and				
$\int_{3}^{6} f(x)<0$				
We can thus write $: \int_{0}^{6} f(x)=0$				
e) A set of bivariate data points $(x ; y)$ has a linear correlationcoefficient of -0.95 . We can thus state that the correlation is weak.				

[^0]
[^0]: Last page : always blank

