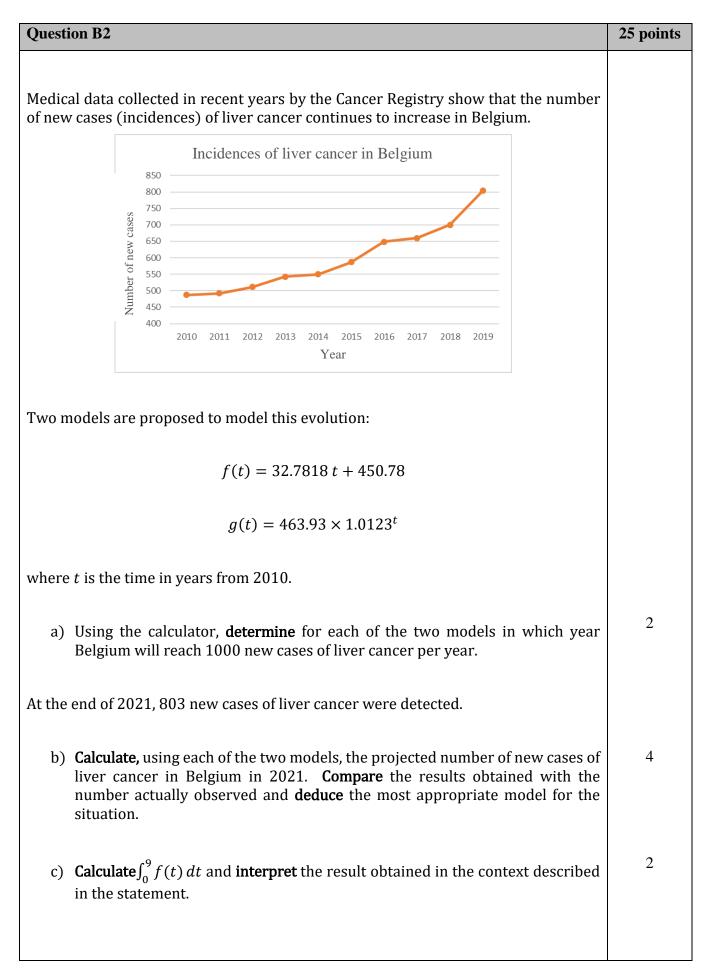
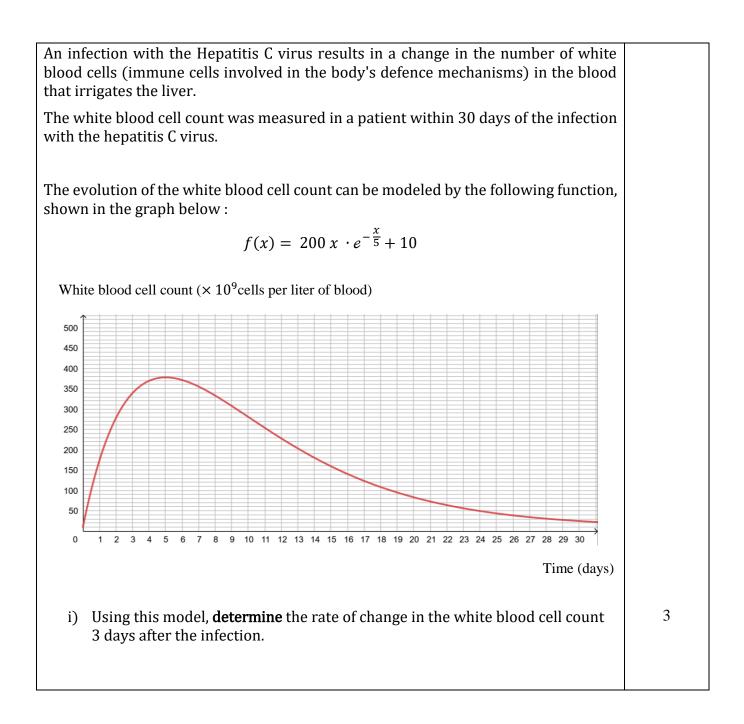


ES Mol 2022-2023

Pre-baccalaureate


Student's name	
Code	

Year	S7	
Subject + language	3P Mathematics (Part B) - English	
Duration	2 hours (120 minutes)	
Teacher	L. Wouters	00
Date of examination	30/01/2023	


Authorized Hardware	NumWorks
Remarks	 This part has 2 questions of 25 points each, for a total of 50 pts. Use a different page for each question. It is essential that the answers be accompanied by the explanations necessary for their preparation.
	• Responses should highlight the reasoning that leads to the results or solutions.
	• When graphs are used to find a solution, the response should include sketches of them.
	• Unless otherwise stated in the question, all points cannot be attributed to a correct answer in the absence of the reasoning and explanations that make it possible to arrive at the results or solutions.
	• Where an answer is incorrect, however, part of the points may be awarded when an appropriate method and/or correct approach has been used.

Question B1	25 points
Following the introduction of 100 squirrels into a forest in 2020, the population is studied. It is observed that the number of squirrels increases by an average of 30% each year.	
It is assumed that the squirrel population can be modeled by a function of the form:	
$P(x) = k \times A^x$	
where <i>P</i> is the number of squirrels	
<i>x</i> is the time in years	
k and A are constants to be determined	
a) Determine the value of the constant <i>A</i> of the model corresponding to the data given. Justify your response.	2
For the rest of the exercise, we use the following function:	
$P(x) = 100 \times 1.3^x$	
b) Calculate the squirrel population after 6 months; 5 years; 10 years.	3
c) Using the calculator, determine the year in which the squirrel population will exceed 500 squirrels.	2
d) Explain why this model cannot be used in the long term.	2
In order to study the squirrel population in 2021, a feeder was installed in the middle of the forest. A camera is placed nearby, as well as a heat detector with a tally counter. Every hour of the day, the number of squirrels present at the feeder is counted.	
During a day in 2021, a maximum number of visitors (10 squirrels) was detected at 8:00 in the morning. At 20:00, the minimum number of visitors was counted (no squirrels).	
It is assumed that the use of the feeder over time can be modelled by a periodic function.	
S Mol Pre-Baccalaureate 2022-2023 3P Mathematics	(Dowt P)

e) Determine the parameters <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> in the model of the type:	3
$N(x) = a \cdot \sin(b \cdot (x - c)) + d$	
where <i>N</i> is the number of squirrels present at the feeder and <i>x</i> is the hours in a day.	
In 2020, a similar study was carried out. The number of squirrels at the feeder over time was modeled in this earlier study by the following function:	
$T(x) = 6 \cdot \sin\left(\frac{\pi}{10} \cdot (x-3)\right) + 7$	
f) Using the periodic model for the year 2020, calculate the number of squirrels at 14:00.	2
g) Represent the periodic pattern.	2
h) Using the periodic model for the year 2020, estimate the hour(s) of the day when there are 7 visitors to the feeder.	3
It is estimated that 10% of the squirrels in the forest are chipped in order to be traced.	
i) Calculate the probability of having at least 1 chipped squirrel among the squirrels present at the feeder at 08:00 in the morning. Round the answer to 4 decimal places.	3
When the squirrel population reaches 1000 individuals, an epidemiological study is conducted. It is observed that 60% of squirrels are females, out of which 15% are still of the generation introduced in 2020; while 250 squirrels are males of one of the following generations.	
We define the following events:	
F = the squirrel is a female	
M = the squirrel is a male	
G0 = the squirrel is of the generation initially introduced	
G1 = the squirrel is of one of the generations following the one initially introduced	
j) A squirrel from the starting generation is taken at random. Determine the probability that this squirrel is a male.	3

Studies show that several risk factors may be involved in the occurrence of liver cancer. Among these factors is an infection with the hepatitis C virus.		
In Belgium, 1% of the population is infected with the hepatitis C virus.		
There is a test for this virus with the following properties:		
- The probability of an infected person having a positive test is 0.98 (sensitivity of the test).		
- The probability of an uninfected person having a negative test is 0.97 (specificity of the test).		
A randomly selected person from the Belgian population is tested at random.		
We define the following events :		
V the event "the person is infected with hepatitis C virus"		
T the event "the test is positive".		
	3	
d) Write this information with correct mathematical probability notations.		
	3	
e) Represent the given situation using a probability tree.	2	
f) Demonstrate that the probability of the test being positive is 0.0395.	2	
1) Demonstrate that the probability of the test being positive is 0.0393.	3	
 g) A person has just received the result of his test: negative. Determine the probability that this person is indeed not infected with the virus. Round the answer to 4 decimal places. 	5	
20 people from the population are chosen at random. The 'draws' are considered independent.		
The random variable X gives the number of people infected with the hepatitis C virus among these 20 people.		
 h) Calculate the probability that there are at least two infected people among the 20. Round this result to 4 decimal places. 	3	

End of Part B