Pre-Baccalaureate examinations - January 2023

Subject	Mathematics
Date	$24 / 01 / 2023$
Length of examination	2 Hours
Teacher	D Shaw
Pupils	11

Surname:

Name:

PART A : EXAMINATION WITHOUT TECHNOLOGICAL TOOL

Special remarks

- This exam is made up of 10 questions printed on 6 pages, including this one.
- Questions should be answered on a given answer booklet
- Answers must be supported by explanations
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless otherwise indicated, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is shown that an appropriate method and/or a correct approach has been used.

1) To sterilise a petri dish before conducting an experiment, it is placed in an oven and the
temperature is increased to destroy the bacteria.
The population of bacteria, N, as a function of time, t, in hours is given by the function:

$$
N(t)=1000 \times e^{\ln (0,5)^{t}}
$$

a) This formula could be written in an alternative form. Choose the equivalent
formula from the following propositions (no justification required).

$N_{1}(t)=1000 \times \ln (0,5)^{t}$	$N_{2}(t)=0,5 \times 1000^{t}$
$N_{3}(t)=1000 \times(0,5)^{t}$	$N_{4}(t)=0,5 \times \ln (1000)^{t}$

b) What is the initial population of bacteria before starting the sterilisation?
c) What is the quantity of bacteria after 2 hours?
2) A landlord puts up one of his properties for rent. He offers his future tenants two possibilities:
A. An initial rent of $1000 €$ with a fixed annual increase of $25 €$.
B. An initial rent of $1000 €$ with an annual increase of 2%.
a) Calculate the monthly rate of rent to be payed in the second year and in the third year if model A is chosen.
b) Calculate the monthly rate of rent to be payed in the second year and in the third year if model B is chosen.
c) Write a function, $f(x)$, to model the rate at which model A increases over time, where x is the number of years after the signature of the contract.
d) Write a function, $g(x)$, to model the rate at which model B increases over time, where x is the number of years after the signature of the contract.
e) Discuss the most interesting offer over a long term, justifying your choice.

PART A
3) Given the functions f, g, h, i and j defined by:

$$
f(x)=2^{x} \quad g(x)=e^{x} \quad h(x)=\ln (x) \quad i(x)=\ln (x-3) \quad j(x)=e^{-x}
$$

And their graphic representations:

Match the function to its corresponding curve. No proof or justification required.
4) Given below is the graph of a function f and the tangent to this function at the point $x=1$.

Determine the equation of the tangent, T.

5) On the graph below you are given the curves of a function f, the derivative of this function f^{\prime}, and one of its primitives F.

Identify which curve corresponds to which function and justify your response.
6) The velocity v in $m \cdot s^{-1}$ of an object after t seconds, between $t=0$ and $t=6$, is given by the function:
$v(t)=4 t \quad$ (in metres per second)
The acceleration of the object is given by the derivative of the velocity, $v^{\prime}(t)$ The displacement of the object is given by a primitive, $V(t)$, of the velocity.
a) What is the initial speed of the object? Which speed is the object travelling at after 3 seconds?
b) Give the expression of the acceleration as a function of time.
c) Knowing that the initial position of the object was $10 m,(V(0)=10)$ give the exact expression of the displacement as a function of time.
d) What distance has the object travelled after 6 seconds?

The above curve represents the flow rate, $f(t)$, in litres per minute for filling a container with a capacity of 25 L .
a) Write in terms of $f(t)$ the integral you would use to get the area between the curve and the x-axis for $0 \leq x \leq 5$.
b) Using the rectangles method with a width of 1, give a left and a right hand estimate of the volume of water poured into the container in the first 5 minutes.

Draw on the above diagram.
c) Interpret the meaning of finding the area between the graph and the horizontal axis on the interval $0 \leq t \leq 5$, in the given context.
d) Given that the capacity of the container is 25 L , will it be full after 5 minutes.
8) Below is the graph of the function f defined by $f(x)=3 x^{2}-6 x$.
a) Calculate and anti-derivative of f.
b) Calculate the area bounded by the function and the x -axis for $0 \leq x \leq 3$.

9)
a) Calculate the integral:

$$
\int_{0}^{1} 4 e^{5 x} d x
$$

b) Calculate the integral $F(x)$ of $f(x)=-3 x^{2}+x+7$ for which $F(0)=5$
10) Given the following integrals:

$$
I=\int_{-2}^{2} f(x) d x=12 \quad J=\int_{2}^{5} f(x) d x=3 \quad K=\int_{5}^{-2} g(x) d x=14
$$

a) Draw a sketch of the possible graphs of f and g showing the areas represented by the integrals.
b) Calculate the following integrals using the information from integrals I, J and K.
$A=\int_{-2}^{5} f(x) d x$
$B=\int_{-2}^{5}(f(x)-g(x)) d x$
$C=\int_{-2}^{2} 5 f(x) d x$

