Mathematics S7MA3

Part A: Examination without technological tool

Date:	Tuesday 31st January 2023
Duration:	2 hours (120 minutes)
Course:	S7-MA3 EN
Teacher:	K. Osborne

Authorised material:

- Formula booklet

Exam without calculator

Page 1 of 5

PART A		
		Marks
1	Consider the function $f(x)=x^{3}+3 x^{2}$. Determine the equation of the tangent to the curve at $x=-1$.	5
2	The population of a small town increases linearly. In 2012 the population was 5000 . Five years later it was found to be 6250 . a) Determine a model for the population P as a function of t where t is the time in years after 2012. b) Investigate in which year the population exceeds 7000 .	3 2
3	A student kicks a ball up into the air. The height of the ball, h, in metres, can be modelled by the function $h(t)=-5 t^{2}+15 t$ where h is the height in metres and t is the time in seconds after it is kicked. Determine the maximum height reached by the ball.	5
4	The function $F(x)=\frac{2}{3} x^{3}+2 x^{2}+2$ is a primitive function of $f(x)$. Consider the graph of the function $f(x)$ shown below. Show that the shaded area bounded by the graph of $f(x)$, the lines $x=-1$ and $x=1$, and the x-axis is equal to 4 square units.	5

Page 2 of 5

5	Scientists observe the population of ladybirds in a field. The population can be modelled by the function $P(t)=200 \cdot e^{\ln (1.015) t}$ where P is the number of ladybirds and t is the time in weeks after the observation starts. a) How many ladybirds are there at the start of the observation? b) Calculate the number of ladybirds after one week. c) Determine the weekly percentage increase.	1 2 2
6	An exponential function is of the form $f(x)=e^{a x+b}$. The graph of $f(x)$ passes through the co-ordinates $(0, e)$ and $\left(1, \frac{1}{e}\right)$. Determine the parameters a and b, and give the function $f(x)$.	5
7	The graph below is the graph of the derivative $f^{\prime}(x)$. For each of the statements below indicate if it is true or false and give a reason for your answer. Marks will only be given if both the answer and the reason are correct. a) The function $f(x)$ has a minimum at $x=-1$. b) The function $f(x)$ is decreasing over the interval $-5<x<3$. c) The function $f(x)$ has two turning points. d) The y-intercept of the graph of $f(x)$ cannot be determined from the graph of $f^{\prime}(x)$. e) The graph of $f(x)$ must have two x-intercepts.	5

Page 3 of 5

8 The graph of a sine function $f(x)$ is shown below.

Page 4 of 5

The acceleration function $a(t)$ is defined as $a(t)=v^{\prime}(t)$, where $v(t)$ is the velocity function.

The acceleration a (in m / s^{2}) of an object at a time t (in seconds) can be modelled by the function $a(t)$. The graph of $a(t)$ is shown below.

The velocity of the object at $t=0$ is equal to $7 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Calculate the velocity after 2 seconds.

Page 5 of 5

