Mathematics S7MA3

Part B: Examination with technological tool

Date: Tuesday 31st January 2023

Duration: 2 hours (120 minutes)

Course: S7-MA3 EN Teacher: K. Osborne

Authorised material:

- Formula booklet

- Calculator: Numworks or an alternative calculator, allowed by the school

Exam with calculator

Page 2 from 6

Question B1	Page 1 of 3	Marks (Total:25)
Ski Jump		
Part 1 (Parts 1, 2 and 3 of this question can be solved in	ndependently.)	
The ramp of a ski jump is shown in the diagram below a	nd can be modelled by	
the function $f(x)$.		
$A = \begin{pmatrix} f(x) & f$	$\frac{x}{x}$	
The function $f(x)$ is defined in the interval shown in the equation:	diagram with the	
$f(x) = \frac{3}{10,000}x^3 - \frac{1}{50}x^2 - \frac{11}{20}x + 70$		
, where $f(x)$ and x are expressed in meters.		
a) Use the equation and the information in the graph domain of $f(x)$.	n to determine the	2
b) Calculate the area A.		3
c) When a skier is at the end of the ramp, the skis d	efine a tangent line r to	4
the graph of $f(x)$. Define this tangent line and sh calculation.	ow every step in your	·
d) The skier is at the lowest point on the ski ramp. C	calculate the height at	4
the lowest point on the ski ramp. Explain your me	ethod.	

							Pag	e 2 of	3		Mark
Part 2											
Use the following	definitions	for Part	s 2 and 3	B <i>:</i>							
The position	on of an obj	ect is a	letermine	d by th	e funct	tion s(t), wh	nere t is	s the ti	ime in	
seconds a	nd s is expi	ressed	in meters								
The veloci	ty function 1	v(t) is	defined a	s v(t) =	= s'(t)						
The accele	eration func	tion a(t	t) is defin	ed as a	a(t) =	v'(t).					
After taking off fr	om the rar	mp, the	e skier fli	es			*				
through the air u	ntil he land	ds on t	he grour	id. The	9	Slata	ar 10 v.Rat	100	-4	time	
time between tal	ke-off and	landin	g is exac	tly 3					William .	ı	
seconds. The ve	locity func	tion $v($	(t) (in $m/$	(s) of t	he flyii	ng sk	ier is	showr	n in th	ie	
graph below (wit	th t in seco	nds).									
↑v											
30		▶ (3, 28	8 9)								
0.5	v(t)	(5, 20	5.0)								
25											
	/ (2,	20.7)									
20											
	(1.14.7)										
15 (0, 1	(1, 14.7)										
15											
15 (0, 1											
15 (0, 1	4)										
15 (0, 1	4)	3	4 5	6	7	8	9	10	11	12 t	
15 (0, 1	A A	3	4 5	6	7	8	9	10	11	\rightarrow	1
15 (0, 1	A A	3	4 5	6	7	8	9	10	11	\rightarrow	1
15 (0, 1	A A									\rightarrow	1 3
e) Find the v	A 2	m/s) (of the sk	ier wh	en he	lands	s on th	he gro	und.	12	
e) Find the v	A 1 2 velocity (in	m/s) (of the sk ion in the	ier wh	en he	lands	s on th	he gro	und.	12	
e) Find the volume of the are	A velocity (in vailable in	m/s) (format	of the sk ion in the ur metho	ier wh e diagr ed.	en he am to	lands calc i	on tl u late	he gro an ap	und. proxir	mation	3
e) Find the v f) Use the a for the are g) Is the app	velocity (in vailable in ea A. Expl	m/s) of the formation for the	of the sk ion in the ur metho e area A	ier whee diagr ed. from o	en he am to questic	lands calco	on tl ulate an <i>ul</i>	ne gro an ap nderes	und. proxir	mation	3

Page 4 from 6

Question B1	Page 3 of 3	Marks
Part 3		
As the skier lands on the landing slope, he slows down		
complete stop. The velocity of the skier on the landing	slope can be	
modelled by the function:		
$v(t) = -3.4 \cdot t + 28.9$		
where t is in seconds and $t = 0$ corresponds to the mo	ment when the skis	
touch the ground.		
i) How long does it take for the skier to slow down	to a complete stop?	2
Justify your answer.	to a complete stop:	_
j) Investigate whether a landing slope of 120 m is	long enough for the	2
skier.	iong onough for the	_

Page 5 from 6

Quest	ion B2				Page 1 of 2	Marks (Total: 25)
The Is	sland			<u> </u>		
Part 1	(Parts	1 and 2 of this question can l	be solved ii	ndepend	dently.)	
The ta	able be	low gives the measured popu	lation on a	n island.		
		Beginning of the year	2015	2020		
		Population	5500	7250		
			l	L		
a)	Use a	linear model to predict the p	opulation a	t the be	ginning of 2023.	2
b)	Peter	uses an <i>exponential model</i> p	$(t) = k \cdot a^t$	to mode	el the	
	popula	ation. In this model $t=0$ corre	esponds to	the beg	inning of 2015	
	and a	and \boldsymbol{k} are parameters. Find t	he parame	ters a a	nd k of the	3
	model	p(t).				
c)	Show	that the exponential model f	(t) = 5500	$\cdot e^{0.0552}$	$^{5\cdot t}$ adequately	2
	fits the	e given data.				
	For qu	uestions d), e) and f), you can	use the ex	ponenti	al model	
	f(t) =	$= 5500 \cdot e^{0.05525 \cdot t}$				
	In this	$model\;t=0\;corresponds\;to\;t$	he beginniı	ng of 20	15.	
d)	Deter	mine the annual growth rate of	of the expo	nential r	model.	2
e)	Calcu	late $f'(5)$ and interpret what	the result i	means i	n the given	
	contex	xt.				2
f)	Use th	ne exponential model to find i	n which ye	ar the p	opulation would	
	reach	10000 people.				3
		beginning of 2022, the island	•		•	
		igh nobody was hurt in the ev	•	•		
		and immediately. After they le	•	vth rate	of the island	
	popula	ation was the same as before				
g)	Inves	tigate in which year the island	l nonulatio	n will ha	the same as it	
9)		t the beginning of 2015.	a population	. WIII DC	and Jame as it	3
	พนร ส					

Page 6 from 6

Question B2		Page 2 c	Page 2 of 2				
Part 2							
The day leng	<i>ith</i> is the tin	ne between	sunrise ar	nd sunset. I	Peter lives	on the	
sland and m	easured th	e day lengtl	h of every f	irst day of	the month o	during a	
whole (non-le	eap) year. ⁻	The results	are given b	elow:			
Date	1st of Jan	1st of Feb	1 st of Mar	1st of Apr	1st of May	1 st of Jun	
Daylength				<u>'</u>	,		
(in hours)	7.67	8.55	10	11.2	12.33	13	
Date	1 st of Jul	1 st of Aug	1st of Sep	1st of Oct	1 st of Nov	1 st of Dec	
Daylength							
(in hours)	13.05	12.67	11.6	10.35	8.95	7.83	
h(x) =	$= a \cdot \sin(b(x))$	e day length $(x-c)+d$ as and $x=1$, where $h(z)$	x) is expres	ssed in hou		
h) Expla	in why the	day length	h(x) can be	e modelled	with a peri	odic	0
model	and give t	he period o	f this mode	el.			2
i) Estim	ate the am	plitude of th	nis periodic	model.			2
j) Hence	e, investiga	ate for whic	h values of	the param	eters a, b, c	, and d	4
the pe	riodic mod	el $h(x)$ fits t	he data ad	equately.			7