MATHEMATICS 3 PERIODS PART B

DATE: $12^{\text {th }}$ June 2023, morning

DURATION OF THE EXAMINATION:

2 hours (120 minutes)

AUTHORISED MATERIAL:

Examination with technological tool:
Approved calculator
Pencil for the graphs
Formelsammlung / Formula booklet / Recueil de formules

SPECIFIC INSTRUCTIONS:

- Use a different page for each question.
- Answers must be supported by explanations.
- Answers must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it is shown that an appropriate method and/or a correct approach has been used.

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

PART B										
QUESTION B1								Page 2/3		Marks
Part 3 The table below shows the annual rainfall (measured in cm) on the farm over the last 10 years.										
Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
$x=$ Years after 2013	0	1	2	3	4	5	6	7	8	9
$y=$ Rainfall (cm)	123	125	117	115	120	113	110	100	108	105

f) Draw a scatter diagram to represent the data from the table and by interpreting this diagram, describe the correlation.
g) Determine an equation in the form $y=m \cdot x+b$ of the linear regression of y on x using the data from the table.
Draw the regression line on the same diagram.
h) Explain why a linear regression model might not be appropriate for this

2 marks data over many years.

PART B				Page 3/3	Marks
QUESTION B1					
Part 4					
There is a pond on the farm, a diagram of which you will find below					
(1 unit $=1$ metre):					
The boundaries of this pond are the graphs of the functions f and g defined					
by					
$f(x)=-0.2 x^{2}+6.9,-5 \leq x \leq 5$ for the upper boundary and					
$g(x)=0.1 x^{2}-0.6,-5 \leq x \leq 5$ for the lower boundary.					
Calculate the area of this pond.					

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

b) Over a certain period, the mean duration of the trips was
$\mu=645$ seconds and the standard deviation was $\sigma=271$ seconds.
Assume that the trip duration is normally distributed.
Calculate the probability that a trip took longer than 12 minutes.

Part 2

A survey covering 2009-2019 has shown that the sale of e-bikes in the European Union can be modelled by the function N given by

$$
N(t)=0.0756 \cdot \mathrm{e}^{0.163 t+2.03}
$$

where t is the number of years after 2009 and $N(t)$ is the number of e-bikes sold, in millions.
c) Rewrite the formula for $N(t)$ in the form $N(t)=K \cdot A^{t}$.
d) According to this model, determine the yearly percentage increase in the sale of e-bikes.
e) Since 2009, the total number of all bikes sold (including e-bikes) in Europe has been approximately constant at 20 million bikes per year.
Estimate the year in which the number of e-bikes sold will be more than 3 marks half of all bikes sold.

EUROPEAN BACCALAUREATE 2023: MATHEMATICS 3 PERIODS

