MATHEMATIK 5 STUNDEN TEIL A

DATUM: TT/MM/JJJJ

DAUER DER PRÜFUNG:120 Minuten

PRÜFUNG OHNE TECHNOLOGISCHES HILFSMITTEL

ERLAUBTE HILFSMITTEL:

Formelsammlung

Anmerkungen:

- Da es sich um ein Musterpapier handelt, kann sich das Deckblatt noch ändern.
- Diese Beispielarbeit sollte nur dazu dienen, um zu sehen, wie Fragen aus dem Lehrplan erstellt werden können, die sich auf Kompetenzen und nicht auf den reinen Inhalt konzentrieren.
- Die Schlüsselwörter, die im Lehrplan zu finden sind, sind fett hervorgehoben, um dem/der Kandidaten/in die Erkenntnis zu erleichtern, auf welche Kompetenz sich die Frage konzentriert, und so bei der Beantwortung der Frage zu helfen.

	TEIL A	
	Seite 1/3	Punkte
S1	Gegeben ist die Funktion f , durch $f(x) = \ln (3x - 2)$.	4
	Bestimmen Sie eine Gleichung der Tangente am Graphen von f wenn $x=1$ ist.	
S2	Bestimmen Sie die komplexen Lösungen der Gleichung: $z^2 = 3i$.	_
	Geben Sie Ihre Antworten in der Schreibweise $z=re^{i\theta}$ wobei $\theta\in]-\pi,+\pi].$	5
S3	Gegeben ist die Funktion f durch $f(x) = \frac{2x-1}{x-1}$. Es sei f^{-1} die Umkehrfunktion	
	vonf .	3
	Lösen Sie die Gleichung $f^{-1}(x) = 2$.	
S4	Eine streng zunehmende arithmetische Folge (a_n) und eine geometrische Folge (b_n) haben dasselbe erste Glied, wobei $a_1=b_1=2$.	
	Außerdem haben beide Folgen (a_n) und (b_n) das gleiche dritte Glied. Das heißt $a_3=b_3$.	7
	Die Summe der ersten drei Folgenglieder der arithmetischen Folge ist um 4 größer als die Summe der ersten drei Folgenglieder der geometrischen Folge.	
	Bestimmen Sie die Formel für das n -te Glied von (a_n) und (b_n) .	
S5	Eine stetige Zufallsvariable X hat eine Dichtefunktion, die durch folgende Formel gegeben ist: $f(x) = \begin{cases} 0 & , x < 0 \\ a \cdot e^{-ax} & , x \ge 0 \end{cases}$	5
	Wir wissen, dass $P(X < 1) = \frac{1}{2}$.	
	Zeigen Sie, dass $a = \ln 2$.	

2021-01-D-52-de-2 47/67

	TEIL A	,	
· ·	Se	ite 2/3	Punkte
	ben ist der Graph der zweiten Ableitung $f^{\prime\prime}$ einer Funktion (siehe dung unten).		
Entso	heiden Sie, welche der folgenden Aussagen wahr und welche false	ch sind.	
Begri	inden Sie Ihre Antwort.		
а) Der Graph von f ist konkav für $-0.5 < x < 2$.		2
b) Der Graph von f hat einen Wendepunkt in $x=0$.		2
С	Wenn $f'(0) = 0$ ist, dann hat der Graph von f einen Wendepu einer horizontalen Tangente in $x = 0$.	ınkt mit	2
	(0.8,3.1) y=f'(x) 1 1 2 3 4	<u>x</u>	

2021-01-D-52-de-2 48/67

	TEIL A				
		Seite 3/3	Punkte		
E1	Ein Drohnenhersteller testet neue Drohnentypen auf einem lokale Leichtathletikplatz.	en			
	Drohne A bewegt sich entlang der durch die Gleichung gegebenen	Bahn:			
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 \\ 13 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ 12 \end{pmatrix}, t \ge 0 $				
	Die Zeit t ist in Sekunden und die Entfernung wird in Metern geme	essen.			
	a) Ermitteln Sie die Position der Drohne A nach 6 Sekunden.		2		
	b) Bestimmen Sie, wie lange die Drohne A braucht, um den Punkt (25/33/60) zu erreichen.				
	c) Berechnen Sie die Geschwindigkeit der Drohne A. Geben Sie Ihre Antwort in der einfachsten Form an.				
	d) Ein Beobachter betrachtet die Drohne A vom Punkt (13/53/0) aus.				
	Berechnen Sie den kürzesten Abstand zwischen der Drohn- Beobachter und den Zeitpunkt, an dem er auftritt.	e A und dem			
	Drohne B startet vom Punkt $(9/11/0)$ und bewegt sich mit 7 m/s Richtung $\begin{pmatrix} 1\\1.5\\3 \end{pmatrix}$.	in die			
	e) Zeigen Sie, dass die Gleichung, die die Position der Drohne lautet: $ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 9 \\ 11 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}, t \ge 0 $	B beschreibt,	2		
	f) Finden Sie den Punkt, an dem sich die Bahnen der Drohner schneiden.	n A und B	2		
	g) Entscheiden Sie, ob die Drohnen an dieser Stelle kollidieren Begründen Sie Ihre Antwort.	n werden.	2		
E2	E2 Zwei Spieler, A und B, werfen abwechselnd und unabhängig voneinander eine faire Münze. Der erste Spieler, der einen Kopf erhält, gewinnt. Angenommen, Spieler A wirft zuerst.				
	a) Schreiben Sie die Wahrscheinlichkeit auf , dass A bei einen gewinnt.	n ersten Wurf	5		
	b) Berechnen Sie die Wahrscheinlichkeit, dass A bei einem d gewinnt.	ritten Wurf			
	c) Bestimmen Sie die Wahrscheinlichkeit, dass A den ersten	Kopf erhält.			

2021-01-D-52-de-2 49/67