MATHEMATICS 5 PERIODS PART A

DATE: DD/MM/YYYY

DURATION OF THE EXAMINATION: 120 minutes

EXAMINATION WITHOUT TECHNOLOGICAL TOOL

AUTHORISED MATERIAL:

Formula Booklet

Notes:

- As this is a sample paper the cover page is likely to change.
- This sample paper should only be used to see how questions can be created from the syllabus focusing on competences rather than strictly on content.
- The keywords found in the syllabus are highlighted in bold to help the candidate see which competency the question is focusing on and thus helping in answering the question.

PART A		
	Page 1/3	Marks
S1	Given the function f, where $f(x)=\ln (3 x-2)$, determine the equation of the tangent to the graph of f when $x=1$.	4
S2	Determine the complex solutions to the equation: $z^{2}=3 i$. Give your answers on the form $z=r e^{i \theta}$ where $\left.\left.\theta \in\right]-\pi,+\pi\right]$.	5
S3	Given the function $f(x)=\frac{2 x-1}{x-1}$. Let f^{-1} be the inverse function of f. Solve the equation $f^{-1}(x)=2$.	3
S4	A strictly increasing arithmetic sequence $\left(a_{n}\right)$ and a geometric sequence (b_{n}) have the same first term, where $a_{1}=b_{1}=2$. Additionally, both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ have the same third term. That is $a_{3}=b_{3}$ The sum of the first three terms of the arithmetic sequence is 4 greater than the sum of the first three terms of the geometric sequence. Determine the formula for the nth term of both $\left(a_{n}\right)$ and $\left(b_{n}\right)$.	7
S5	A continuous random variable X has a density function given by a formula: $f(x)=\left\{\begin{array}{cc} 0 & , x<0 \\ a \cdot e^{-a x} & , x \geq 0 \end{array}\right.$ We know that $P(X<1)=\frac{1}{2}$. Show that $a=\ln 2$.	5

Page 2/3

Given is the graph of the second derivative $f^{\prime \prime}$ of a function (see figure below). Decide which of the following statements are true and which are false. Justify your answer.
a) The graph of f is concave for $-0,5<x<2$.
b) The graph of f has an inflection point at $x=0$.
c) If $f^{\prime}(0)=0$, then the graph of f has an inflection point with a horizontal tangent at $x=0$.
P)

