MATHEMATICS 5 PERIODS

PART A

DATE: DD/MM/YYYY

DURATION OF THE EXAMINATION: 120 minutes

EXAMINATION WITHOUT TECHNOLOGICAL TOOL

AUTHORISED MATERIAL:

Formula Booklet

Notes:

- As this is a sample paper the cover page is likely to change.
- This sample paper should only be used to see how questions can be created from the syllabus focusing on competences rather than strictly on content.
- The keywords found in the syllabus are highlighted in bold to help the candidate see which competency the question is focusing on and thus helping in answering the question.

	PART A		
	Pag	e 1/3	Marks
S1	Given the function f , where $f(x) = \ln (3x - 2)$, determine the equation of the tangent to the graph of f when $x = 1$.		4
S2	Determine the complex solutions to the equation: $z^2 = 3i$. Give your answers on the form $z = re^{i\theta}$ where $\theta \in [-\pi, +\pi]$.		5
S3	Given the function $f(x) = \frac{2x-1}{x-1}$. Let f^{-1} be the inverse function of f . Solve the equation $f^{-1}(x) = 2$.		3
S4	A strictly increasing arithmetic sequence (a_n) and a geometric sequence (b_n) have the same first term, where $a_1 = b_1 = 2$. Additionally, both (a_n) and (b_n) have the same third term. That is $a_3 = b_3$ The sum of the first three terms of the arithmetic sequence is 4 greater than the sum of the first three terms of the geometric sequence.		7
	Determine the formula for the <i>n</i> th term of both (a_n) and (b_n) .		
S5	A continuous random variable X has a density function given by a formula: $f(x) = \begin{cases} 0 & , x < 0 \\ a \cdot e^{-ax} & , x \ge 0 \end{cases}$ We know that $P(X < 1) = \frac{1}{2}$. Show that $a = \ln 2$.		5

		$\frac{1}{2}$	Marke
	•	-age 5/3	IVIALKS
E1	A drone manufacturer tests new types of drones at a local athletics	ield.	
	Drone A moves along the path given by the equation:		
	$\binom{x}{y}_{z} = \binom{10}{13}_{0} + t\binom{3}{4}_{12}, t \ge 0$		
	The time t is in seconds and distance is measured in meters.		
	a) Find the position of drone A after 6 seconds.		2
	b) Determine how long it will take the drone A to reach the poin (25,33,60).	nt	2
	c) Calculate the speed of the drone A. Give your answer in a sin form.	nplest surd	2
	d) There is an observer watching drone A from the point (13,53	5,0).	3
	Calculate the shortest distance between the drone A and the and the time when it occurs.	observer,	
	Drone B takes off from the point (9,11,0) and moves at 7 m/s in the $\begin{pmatrix} 1\\1.5\\3 \end{pmatrix}$. e) Show that the equation describing the position of the drone	direction B is:	2
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 9 \\ 11 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}, t \ge 0$		
	f) Find the point at which the paths of the drones A and B inter	sect.	2
	g) Decide whether the drones will collide at this point.		2
	Justify your answer.		
E2	Two players, A and B alternately and independently flip a fair coin. T player to get a head wins. Assume player A flips first.	he first	
	a) Write down the probability that A wins in a first throw.		5
	b) Calculate the probability that A wins in a third throw.		
	c) Determine the probability that A obtains the first head.		