Part A Answers

	A Answers Part A	Points						
		KC	Μ	PS	Ι			
S1	Given the function f , where $f(x) = \ln (3x - 2)$, determine the equation of graph of f when $x = 1$.	of the t	tangen	t to th	e			
	f(1) = 0 f'(1) = 3 0 = 3(1) + c c = -3	3	1					
	y = 3x - 3							
S2	Determine the complex solutions to the equation: $z^2 = 3i$.							
	Give your answers on the form $z = re^{i\theta}$ where $\theta \in [-\pi, +\pi]$.	1	1	1				
	Give your answers on the form $z = re^{i\theta}$ where $\theta \in \left]-\pi, +\pi\right]$. $z = (3i)^{\frac{1}{2}} = (3cis\left(\frac{\pi}{2}\right))^{\frac{1}{2}} = \sqrt{3}cis\left(\frac{\pi}{4}\right) = \sqrt{3}e^{\frac{i\pi}{4}}$	3	2					
S3	Given the function $f(x) = \frac{2x-1}{x-1}$. Let f^{-1} be the inverse function of f . Solve the equation $f^{-1}(x) = 2$.							
	Determine the inverse function:							
	$y = \frac{2x - 1}{x - 1}$							
	x-1							
	$y \cdot x - y = 2x + 1$							
	$y \cdot x - 2x + 1 = y$							
	$x \cdot (y-2) = y-1$		2	1				
	$x = \frac{y-1}{y-2}$ exchange x and y: $y = f^{-1}(x) = \frac{x-1}{x-2}$							
	$f^{-1}(x) = \frac{x-1}{x-2} = 2$							
	$x-1=2x-4 \implies x=3$							
S4	A strictly increasing arithmetic sequence (a_n) and a geometric sequence (b_n) have the same first term, where $a_1 = b_1 = 2$. Additionally, both (a_n) and (b_n) have the same third term. That is $a_3 = b_3$ The sum of the first three terms of the arithmetic sequence is 4 greater than the sum of the first three terms of the geometric sequence. Determine the formula for the <i>n</i> th term of both (a_n) and (b_n) .							
	$a_1 = b_1 = 2$							
	$a_3 = b_3 \iff a_1 + 2d = b_1 \cdot q^2 \iff 2 + 2d = 2 \cdot q^2 \mid :2$							
	$1+d=q^2 -1$							
	$d = q^2 - 1 (I)$	2	2	3				
	$s_{a,3} = s_{b,3} + 4 \iff 3a_1 + 3d = b_1(1 + q + q^2) + 4$							
	$\Leftrightarrow 6+3d = 2(1+q+q^2)+4 -4$							
	$2+3d = 2+2q+2q^2 (II)$							

	(I) in (II) :				
	$2 + 3(q^2 - 1) = 2 + 2q + q^2$				
	$2+3q^2-3=2+2q+q^2$ $ -2-2q-2q^2$				
	$q^2 - 2q - 3 = 0$				
	pq-formula:				
	$q = 1 \pm \sqrt{1+3} \implies q_1 = 3, \qquad q_2 = -1$				
	$\Rightarrow d_1 = 3^2 - 1 = 8, d_2 = (-1)^2 - 1 = 0$				
	$d_2^{}$ can be excluded, as the sequence $\left(a_{_n} ight)$ is strictly increasing according				
	to the precondition.				
	$\Rightarrow \frac{(a_n) = 2 + (n-1) \cdot 8 = 8n-6}{(b_n) = 2 \cdot 3^{n-1}}$				
	$(b_n) = 2 \cdot 3^{n-1}$				
S5	A continuous random variable <i>X</i> has a density function given by a formula:				
	$f(x) = \begin{cases} 0 & , x < 0 \\ a \cdot e^{-ax} & , x > 0 \end{cases}$				
	We know that $P(X < 1) = \frac{1}{2}$.				
	Show that $a = \ln 2$.				
	1				
	$\int_0^1 ae^{-ax} dx = {}_0^1 [-e^{-ax}] = -e^{-a} + 1$				
	$-e^{-a} + 1 = \frac{1}{2}$				
			2	3	
	$e^{-a} = \frac{1}{2}$				
	$e^a = 2$				
	$a = \ln (2)$				
S6	Given is the graph of the second derivative f'' of a function (see figure belo Decide which of the following statements are true and which are false	w).			
	Decide which of the following statements are true and which are false. Justify your answer.				
	a) The graph of f is concave for $-0.5 < x < 2$.				
	b) The graph of f has an inflection point at $x = 0$.				
	c) If $f'(0) = 0$, then the graph of f has an inflection point with a horizont	al tang	gent at	x = 0	

	d) $\begin{pmatrix} -3+3t\\ -40+4t\\ 12t\\ 12\sqrt{10} \end{pmatrix}$ ° $\begin{pmatrix} 3\\ 4\\ 12 \end{pmatrix}$ = 0, so $t = 1$ and $\begin{bmatrix} 0\\ -36\\ 12 \end{bmatrix}$ = $\sqrt{1440}$ =		2	1	
	e) $\begin{bmatrix} 1\\ 1.5\\ 3 \end{bmatrix} = \sqrt{12.25} =$ 3.5 but the speed of the drone B is two times bigger,			1	1
	so the velocity vector of the drone B must be $\begin{pmatrix} 2\\3\\6 \end{pmatrix}$				
	f) $\begin{pmatrix} 10\\13\\0 \end{pmatrix} + t_A \begin{pmatrix} 3\\4\\12 \end{pmatrix} = \begin{pmatrix} 9\\11\\0 \end{pmatrix} + t_B \begin{pmatrix} 2\\3\\6 \end{pmatrix}$, point of intersection (13,17,12)		2		
	g) No because $t_A = 1s$ and $t_B = 2s$			2	
E2	Two players, A and B alternately and independently flip a fair coin. The first	t playe	r to ge	t a hea	nd
	wins. Assume player A flips first.	-	-		
	a) Write down the probability that A wins in a first throw.				
	b) Calculate the probability that A wins in a third throw.				
	c) Determine the probability that A obtains the first head.				
	a) $\frac{1}{2}$ b) $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$ c) Player one can win at the first, the third, the fifth throw., so $P(A) = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdots \cdots \cdots$ $P(A) = \frac{1}{2} + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^5$ It leads the infinite geometric sequence with $a_1 = \frac{1}{2}$ and $q = \frac{1}{4}$, so $s_{\infty} = \frac{a}{1-q} = \frac{\frac{1}{2}}{3} = \frac{2}{3}$			3	2