

S4 A strictly increasing arithmetic sequence (a_{n}) and a geometric sequence (b_{n}) have the same first term, where $a_{1}=b_{1}=2$.
Additionally, both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ have the same third term. That is $a_{3}=b_{3}$
The sum of the first three terms of the arithmetic sequence is 4 greater than the sum of the first three terms of the geometric sequence.
Determine the formula for the nth term of both $\left(a_{n}\right)$ and $\left(b_{n}\right)$.

$$
\begin{aligned}
& a_{1}=b_{1}=2 \\
& a_{3}=b_{3} \Leftrightarrow a_{1}+2 d=b_{1} \cdot q^{2} \Leftrightarrow 2+2 d=2 \cdot q^{2} \quad \mid: 2 \\
& 1+d=q^{2} \quad \mid-1 \\
& d=q^{2}-1 \quad(I) \\
& s_{a, 3}=s_{b, 3}+4 \Leftrightarrow 3 a_{1}+3 d=b_{1}\left(1+q+q^{2}\right)+4 \\
& \Leftrightarrow \quad 6+3 d=2\left(1+q+q^{2}\right)+4 \quad \mid-4 \\
& 2+3 d=2+2 q+2 q^{2} \quad(I I)
\end{aligned}
$$

	$\begin{aligned} & (I) \text { in }(I I): \\ & 2+3\left(q^{2}-1\right)=2+2 q+q^{2} \\ & 2+3 q^{2}-3=2+2 q+q^{2} \quad \mid-2-2 q-2 \mathrm{q}^{2} \\ & q^{2}-2 q-3=0 \end{aligned}$ pq-formula: $\begin{aligned} q=1 \pm \sqrt{1+3} & \Rightarrow q_{1}=3, & & q_{2}=-1 \\ & \Rightarrow d_{1}=3^{2}-1=8, & & d_{2}=(-1)^{2}-1=0 \end{aligned}$ d_{2} can be excluded, as the sequence $\left(a_{n}\right)$ is strictly increasing according to the precondition. $\Rightarrow \begin{aligned} & \left(a_{n}\right)=2+(n-1) \cdot 8=8 n-6 \\ & \left(b_{n}\right)=2 \cdot 3^{n-1} \end{aligned}$			
S5	A continuous random variable X has a density function given by a formula: $f(x)=\left\{\begin{array}{cc} 0 & , x<0 \\ a \cdot e^{-a x} & , x \geq 0 \end{array}\right.$ We know that $P(X<1)=\frac{1}{2}$. Show that $a=\ln 2$.			
	$\begin{gathered} \int_{0}^{1} a e^{-a x} d x={ }_{0}^{1}\left[-e^{-a x}\right]=-e^{-a}+1 \\ -e^{-a}+1=\frac{1}{2} \\ e^{-a}=\frac{1}{2} \\ e^{a}=2 \\ a=\ln (2) \\ \hline \end{gathered}$	2	3	
S6	Given is the graph of the second derivative $f^{\prime \prime}$ of a function (see figure below) Decide which of the following statements are true and which are false. Justify your answer. a) The graph of f is concave for $-0,5<x<2$. b) The graph of f has an inflection point at $x=0$. c) If $f^{\prime}(0)=0$, then the graph of f has an inflection point with a horizon			

	a) False. For $-0.5<x<2 f^{\prime \prime}(x)$ assumes values greater than and less than zero. b) True. $f^{\prime \prime}$ is equal to zero at $x=2$ with change of sign from + to -. c) True. If $f^{\prime}(0)=0, f^{\prime \prime}(0)=0$, and second derivative changes its sign at $x=0$, then we have a stationary point of inflection.		1 2	2 1	
E1	A drone manufacturer tests new types of drones at a local athletics field. Drone A moves along the path given by the equation: $\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} 10 \\ 13 \\ 0 \end{array}\right)+t\left(\begin{array}{c} 3 \\ 4 \\ 12 \end{array}\right), t \geq 0$ The time t is in seconds and distance is measured in meters. a) Find the position of drone A after 6 seconds. b) Determine how long it will take the drone A to reach the point (25 c) Calculate the speed of the drone A. Give your answer in a simplest d) There is an observer watching drone A from the point $(13,53,0)$. Calculate the shortest distance between the drone A and the obse it occurs. Drone B takes off from the point $(9,11,0)$ and moves at $7 \mathrm{~m} / \mathrm{s}$ in the directic e) Show that the equation describing the position of the drone B is: $\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} 9 \\ 11 \\ 0 \end{array}\right)+t\left(\begin{array}{l} 2 \\ 3 \\ 6 \end{array}\right), t \geq 0$ f) Find the point at which the paths of the drones A and B intersect. g) Decide whether the drones will collide at this point. Justify your answer.	5,33,60) t surd erver, a ction			
	a) $t=6$, so $(28,37,72)$ b) $\left(\begin{array}{c}25 \cdot \\ 33 \\ 60\end{array}\right)=\left(\begin{array}{c}10 \\ 13 \\ 0\end{array}\right)+t\left(\begin{array}{c}3 \\ 4 \\ 12\end{array}\right), \mathrm{t}=5$ c) $\sqrt{3^{2}+4^{2}+12^{2}}=\sqrt{169}=13 \mathrm{~m} / \mathrm{s}$	1 1	1 1 1	1	

d) $\left(\begin{array}{c}-3+3 t \\ -40+4 t \\ 12 t\end{array}\right) \circ\left(\begin{array}{c}3 \\ 4 \\ 12\end{array}\right)=0$, so $t=1$ and $\left[\left(\begin{array}{c}0 \\ -36 \\ 12\end{array}\right)\right]=\sqrt{1440}=$ $12 \sqrt{10}$
e) $\left[\left(\begin{array}{c}1 \\ 1.5 \\ 3\end{array}\right)\right]=\sqrt{12.25}=$
3.5 but the speed of the drone B is two times bigger,
so the velocity vector of the drone B must be $\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right)$
f)

	2	1	
		1	1
2			

E2 Two players, A and B alternately and independently flip a fair coin. The first player to get a head wins. Assume player A flips first.
a) Write down the probability that A wins in a first throw.
b) Calculate the probability that A wins in a third throw.
c) Determine the probability that A obtains the first head.
a) $\frac{1}{2}$
b) $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}$
c) Player one can win at the first, the third, the fifth throw., so $\mathrm{P}(\mathrm{A})=\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \ldots \ldots \ldots$
$\mathrm{P}(\mathrm{A})=\frac{1}{2}+\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{5} \ldots$
It leads the infinite geometric sequence with $a_{1}=\frac{1}{2}$ and $q=\frac{1}{4}$, so

$$
s_{\infty}=\frac{a}{1-q}=\frac{\frac{1}{2}}{\frac{3}{4}}=\frac{2}{3}
$$

