MATHEMATICS 5 PERIODS

PART B

DATE: DD/MM/YYYY

DURATION OF THE EXAMINATION: 120 minutes

EXAMINATION WITH TECHNOLOGICAL TOOL

AUTHORISED MATERIAL:

Technological tool

Formula Booklet

Notes:

- As this is a sample paper the cover page is likely to change.
- This sample paper should only be used to see how questions can be created from the syllabus focusing on competences rather than strictly on content.
- The keywords found in the syllabus are highlighted in bold to help the candidate see which competency the question is focusing on and thus helping in answering the question.

PART B	
Question 2/4	
A kids' play area manufacturer wants to offer its customers a new model of slide. They create a diagram of the proposed slide in an oblique projection:	

The profile of this slide is measured in meters and can be modeled by the function $F(x)=(a x-b) e^{-x}$, for $1 \leq x \leq 4$, where a and b are two parameters. The function F was drawn below.

a) It is planned that the tangent to the function F at the point where $x=1$ would be horizontal.

Determine the value of the parameter b.
b) It is also planned that the top of the slide will be at 1.85 meters.

Determine the value of the parameter a.
The profile of the wall is finally modeled by $F(x)=5 x \cdot e^{-x}$.
c) Show that the total area of each side wall, shaded grey on the diagram is equal to
$5-\frac{25}{e^{4}} \mathrm{~m}^{2}$.
d) Determine the point on the slide where the gradient is greatest.

PART B

Question 4/4

Given are the plane $E: 2 x_{1}-x_{2}+3 x_{3}=5$ and for each $a \in \mathbb{R}$ a straight line:

$$
g_{a}: \vec{x}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+t \cdot\left(\begin{array}{l}
1 \\
a \\
2
\end{array}\right)
$$

a) Determine the coordinates of the intersection of the straight line g_{a} with the plane E in terms of a.
b) Find for which value of a is there no solution.

Interpret the result geometrically.

