MATHEMATICS 5 PERIODS

PART B

DATE: DD/MM/YYYY

DURATION OF THE EXAMINATION: 120 minutes

EXAMINATION WITH TECHNOLOGICAL TOOL

AUTHORISED MATERIAL:

Technological tool

Formula Booklet

Notes:

- As this is a sample paper the cover page is likely to change.
- This sample paper should only be used to see how questions can be created from the syllabus focusing on competences rather than strictly on content.
- The keywords found in the syllabus are highlighted in bold to help the candidate see which competency the question is focusing on and thus helping in answering the question.

Question 1/4	Marks
Tom and Simon play a board game. Each time Tom manages to move his piece around the board he gets 5 points. Each time Simon manages to move his piece around the board he gets 10% of the previous amount. They both start with 10 points.	
a) Calculate Tom's total score after moving around the board 20 times.	
b) Write in terms of n the formula $T(n)$ for Tom's score after n moves around the board.	2 2
c) If you know that Simon's score after n moves around the board could be modelled with a geometric sequence, explain the use of the formula:	2
$S(n) = 11 \cdot 1.1^{n-1}$	
 d) Simon and Tom have been around the board the same number of times. Simon's score has just moved ahead of Tom's. 	3
Find how many times have they been around the board.	
Simon loses 5 cents, and for the sum bigger or equal 10 Simon receives 30 cents. The winnings are governed by the probability distribution shown below, where the random variable <i>N</i> is the sum of scores.	
$N \qquad n < 6 \qquad 6 \le n \le 9 \qquad n \ge 10$	
Winnings n10 cents-5 cents30 cents	
$P(N=n) \qquad a \qquad \frac{20}{36} \qquad b$	
e) Show, that $a = \frac{10}{36}$ et $b = \frac{6}{36}$.	2
 f) Calculate the expected value of Simon's winnings in this game and comment if it is worth Simon playing, 	2
g) A game is said to be fair if the expected value is 0.	2
Determine how many cents should be lost for the sum between 6 and 9 to make	

		PART B		
Question 3/4				Marks
Optical smoke detecto produces photocells for rejects those that are f controller is found to v and sometimes a lowe normal distribution with	ors contain a photocell or this purpose. A contr faulty. On average he i vary - sometimes he de er percentage. The cont th a standard deviation	as an important compo roller automatically che s 86% accurate. Howev tects a higher percenta croller's accuracy is four n of 5%.	nent. A factory cks photocells and rer, the accuracy of the ge of faulty photocells nd to be modelled by a	
a) Find the proba	ability that the controll	er is less than 85% accu	urate.	1
b) $\frac{9}{10}$ of the time	the controller is less th	an $x\%$ accurate. Deter	mine <i>x</i> .	2
c) Given that, on probability that	a particular day, the c at he is more than 85%	ontroller is less than 90 accurate.	% accurate, find the	2
Two types of optical sr probability of an alarm	moke detector are beir n being triggered the m	ng tested for reliability. Hore reliable it is.	The higher the	
Type A contains a singl	le photocell and is trig	gered when this photoc	ell is activated.	$\langle \rangle$
Type B contains three activated.	photocells and is trigge	ered if at least two of th	e three photocells are	
The probability of a ph of both types of alarm $P(A_p)$ is the probabilit	otocell being activated being triggered is calc ty of type A being trigg	l in the presence of smo ulated for different valu ered when the probabil	bke is p. The probability les of p . jty is p ,	
$P(B_p)$ is the probabilit	ty of type B being trigg	ered when the probabil	ity is p.	
d) Complete the	table below.			4
p	0.3	0.5	0.7	
$P(A_p)$	0.3	0.5	0.7	
$P(B_p)$				
More reliable type				
e) Determine for	what value of p does	type B become more re	liable than type A.	2
f) Show that, in t	terms of p , $P(A_p) = p$	and $P(B_p) = -2p^3 + 2$	$3p^{2}$.	4
g) Explain the me question. Expl	eaning of the following ain what is calculated	function R in relation to in lines (1) to (3) and int	o the context of the t erpret the result.	3
\frown	$R:p\mapsto R(p)=$	$-2p^3 + 3p^2 - p$		
	(1) $R'(p) =$	$-6p^2 + 6p - 1$		
	(2) $R'(p) =$	$0 \implies p_1 \approx 0,79$		
	(3) <i>R</i> ′	$(p_1) < 0$		
		·		

PART B				
Question 4/4				
Given are the plane $E: 2x_1 - x_2 + 3x_3 = 5$ and for each $a \in \mathbb{R}$ a straight line:				
$g_a: \vec{x} = \begin{pmatrix} 0\\1\\1 \end{pmatrix} + t \cdot \begin{pmatrix} 1\\a\\2 \end{pmatrix}$				
a) Determine the coordinates of the intersection of the straight line g_a with the plane E in terms of a .	4			
b) Find for which value of <i>a</i> is there no solution.	3			
Interpret the result geometrically.	\frown			
	/			