	Part B	Points			
		KC	M	PS	1

1 Tom and Simon play a board game. Each time Tom manages to move his piece around the board he gets 5 points. Each time Simon manages to move his piece around the board he gets 10% of the previous amount. They both start with 10 points.
a) Calculate Tom's total score after moving around the board 20 times.
b) Write in terms of n the formula $\boldsymbol{T}(\boldsymbol{n})$ for Tom's score after \boldsymbol{n} moves around the board.
c) If you know that Simon's score after n moves around the board could be modelled with a geometric sequence, explain the use of the formula:

$$
S(n)=11 \cdot 1.1^{n-1}
$$

d) Simon and Tom have been around the board the same number of times. Simon's score has just moved ahead of Tom's.
Find how many times have they been around the board.
Tom challenges Simon to a dice game. Two fair six-sided die are rolled and the sum of scores is noted. For a sum less than 6 Simon receives 10 cents, for a sum between 6 and 9 Simon loses 5 cents, and for the sum bigger or equal 10 Simon receives 30 cents. The winnings are governed by the probability distribution shown below, where the random variable N is the sum of scores.

N	$\boldsymbol{n}<\mathbf{6}$	$\mathbf{6} \leq \boldsymbol{n} \leq \mathbf{9}$	$\boldsymbol{n} \geq \mathbf{1 0}$
Winnings n	10 cents	-5 cents	30 cents
$\boldsymbol{P}(\boldsymbol{N}=\boldsymbol{n})$	a	$\overline{\mathbf{2 0}}$	b

e) Show, that $a=\frac{10}{36}$ et $b=\frac{6}{36}$.
f) Calculate the expected value of Simon's winnings in this game and comment if it is worth Simon playing.
g) A game is said to be fair if the expected value is 0 .

Determine how many cents should be lost for the sum between 6 and 9 to make this game fair.
a) Calculate Tom's score after moving around the board 20 times.
$c=15+19 \cdot 5$
$\rightarrow 110$
b) Write in terms of n the formula $T(n)$ for Tom's score after n moves around the board.
$T(n)=5 n+10$
c)
d) Sketch the graph of $\mathrm{T}(\mathrm{n})$ and $\mathrm{S}(\mathrm{n})$ in the same coordinate system.

| 2 | | |
| :--- | :--- | :--- | :--- |
| 1 | 1 | |
| 2 | 1 | |
| 2 | | |

photocells for this purpose. A controller automatically checks photocells and rejects those that are faulty. On average he is 86% accurate. However, the accuracy of the controller is found to vary sometimes he detects a higher percentage of faulty photocells and sometimes a lower percentage. The controller's accuracy is found to be modelled by a normal distribution with a standard deviation of 5\%.
a) Find the probability that the controller is less than 85% accurate.
b) $\frac{9}{10}$ of the time the controller is less than $x \%$ accurate. Determine x.
c) Given that, on a particular day, the controller is less than 90% accurate, find the probability that he is more than 85% accurate.
Two types of optical smoke detector are being tested for reliability. The higher the probability of an alarm being triggered the more reliable it is.
Type A contains a single photocell and is triggered when this photocell is activated.
Type B contains three photocells and is triggered if at least two of the three photocells are activated.
The probability of a photocell being activated in the presence of smoke is p. The probability of both types of alarm being triggered is calculated for different values of p.
$P\left(A_{p}\right)$ is the probability of type A being triggered when the probability is p, $P\left(B_{p}\right)$ is the probability of type B being triggered when the probability is p.
d) Complete the table below.

p	0.3	0.5	0.7
$P\left(A_{p}\right)$	0.3	0.5	0.7
$P\left(B_{p}\right)$			
More reliable type			

e) Determine for what value of p does type B become more reliable than type A .
f) Show that, in terms of $p, P\left(A_{p}\right)=p$ and $P\left(B_{p}\right)=-2 p^{3}+3 p^{2}$.
g) Explain the meaning of the following function R in relation to the context of the question.

Explain what is calculated in lines (1) to (3) and interpret the result.
$R: p \mapsto R(p)=-2 p^{3}+3 p^{2}-p$
(1) $R^{\prime}(p)=-6 p^{2}+6 p-1$
(2) $R^{\prime}(p)=0 \Rightarrow p_{1} \approx 0,79$
(3) $R^{\prime \prime}\left(p_{1}\right)<0$

```
    \mu=86\sigma=5
```



```
\mu 86 \sigma
```


a)

1

1

1

