Part B Answers

	Part B		ŀ	КС	Poi M	i nts PS			
Tom and Simon play a	hoard game Fach time	Tom manages to move	his nie						
	id Simon play a board game. Each time Tom manages to move his piece around the boa 5 5 points. Each time Simon manages to move his piece around the board he gets 10% c								
	vious amount. They both start with 10 points.								
•	Iculate Tom's total score after moving around the board 20 times.								
-	s of n the formula $T(n)$	-			nd the	hoar			
-	hat Simon's score after n								
· · · · · · · · · · · · · · · · · · ·	quence, explain the use				mouer				
geometrie set		$(n) = 11 \cdot 1.1^{n-1}$							
d) Simon and To	m have been around the		er of ti	imes	Simon	's sco			
	nead of Tom's.								
•	ny times have they been	around the board.							
	, ,								
Tom challenges Simor	n to a dice game. Two fai	ir six-sided die are rolled	d and t	he su	m of s	cores			
noted. For a sum less	than 6 Simon receives 1	0 cents, for a sum betw	een 6	and 9	Simor	lose			
cents, and for the sun	n bigger or equal 10 Sim	on receives 30 cents. Th	ne win	nings	are go	verne			
the probability distrib	ution shown below, whe	ere the random variable	Nis tl	ne sur	n of sc	ores.			
N	<i>n</i> < 6	$6 \le n \le 9$		$n \ge$					
Winnings <i>n</i>	10 cents	-5 cents		30 ce	ents				
P(N = n)	a	20		b					
e) Show , that a	10 6	36							
Simon playing	•								
g) A game is said	d to be fair if the expecte	ed value is 0.							
	d to be fair if the expecte ow many cents should be		en 6 a	nd 9 t	o mak	e this			
Determine ho fair.	ow many cents should be	e lost for the sum betwe	en 6 a		o mak	e this			
Determine ho fair.	-	e lost for the sum betwe	en 6 a	nd 9 t 2	o mak	e this			
Determine ho fair.	ow many cents should be	e lost for the sum betwe	en 6 a		o mak	e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$	ow many cents should be	e lost for the sum betwe	en 6 a		o mak	e this			
Determine ho fair. a) Calculate Tom's so	ow many cents should be	e lost for the sum betwe	en 6 a		o mak	e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$	ow many cents should be core after moving aroun	e lost for the sum betwe			o mak	e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe			o mak	e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe			o mak	e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe		2		e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe		2		e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2		e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1	e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1	e this			
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				
Determine ho fair. a) Calculate Tom's so $c = 15 + 19 \cdot 5$ $\rightarrow 110$ b) Write in terms of around the board T(n)=5n+10 c)	ow many cents should be core after moving aroun n the formula T(n) for To	e lost for the sum betwe d the board 20 times. om's score after n move		2	1				

2021-01-D-53-en-2

photocells for this purpose. A controller automatically checks photocells and rejects those that are faulty. On average he is 86% accurate. However, the accuracy of the controller is found to vary sometimes he detects a higher percentage of faulty photocells and sometimes a lower percentage. The controller's accuracy is found to be modelled by a normal distribution with a standard deviation of 5%.

- a) **Find** the probability that the controller is less than 85% accurate.
- b) $\frac{9}{10}$ of the time the controller is less than x% accurate. **Determine** x.
- c) Given that, on a particular day, the controller is less than 90% accurate, find the probability that he is more than 85% accurate.

Two types of optical smoke detector are being tested for reliability. The higher the probability of an alarm being triggered the more reliable it is.

Type A contains a single photocell and is triggered when this photocell is activated.

Type B contains three photocells and is triggered if at least two of the three photocells are activated.

The probability of a photocell being activated in the presence of smoke is p. The probability of both types of alarm being triggered is calculated for different values of *p*.

 $P(A_p)$ is the probability of type A being triggered when the probability is p,

 $P(B_p)$ is the probability of type B being triggered when the probability is p.

d) **Complete** the table below.

p	0.3	0.5	0.7
$P(A_p)$	0.3	0.5	0.7
$P(B_p)$			
More reliable type			

e) **Determine** for what value of p does type B become more reliable than type A.

f) Show that, in terms of p, $P(A_p) = p$ and $P(B_p) = -2p^3 + 3p^2$.

R:p

g) **Explain** the meaning of the following function R in relation to the context of the question. Explain what is calculated in lines (1) to (3) and interpret the result.

 $\mu = 86 \sigma = 5$

1 1 1

	calculated it is located at the position $m \sim 0.70$			
	calculated. It is located at the position $p_1 \approx 0.79$. Equation (3): The sign of the second derivative function at			
	position p_1 is checked. R'' has a negative sign there.			
	In this way, an extremum is calculated for the difference			
	function R, namely a maximum, since $R''(p)$ is negative. If			
	$p \approx 0.79$ is chosen, the difference function $R(p)$ has the			
	highest value, i.e. the reliability of the message is greatest			
4	here. Given are the plane $E: 2x_1 - x_2 + 3x_3 = 5$ and for each $a \in \mathbb{R}$ a straight line	,		
-	$\begin{array}{c} (0) \\ (1) \\ (1) \end{array}$			
	$g_a: \vec{x} = \begin{pmatrix} 0\\1\\1 \end{pmatrix} + t \cdot \begin{pmatrix} 1\\a\\2 \end{pmatrix}$			
		with the n	lano F	in
	a) Determine the coordinates of the intersection of the straight line g_a v terms of a .	with the p		
	b) Find for which value of <i>a</i> is there no solution.			
	Interpret the result geometrically.			
	a) g_a in E :	2	2	
	2t - (1 + ta) + 3(1 + 2t) = 5			
	2t - 1 - ta + 3 + 6t = 5 (8 - a) \cdot t = 3			
	$t = \frac{3}{8-a} \text{ for } a \neq 8$			
	(3 + 3a + 6)			
	$\Rightarrow S_a\left(\frac{3}{8-a}\left 1+\frac{3a}{8-a}\right 1+\frac{6}{8-a}\right)$			
	b) There is no solution for $a = 8$. In this case the direction vector of the		2	1
	straight line g_8 is perpendicular to the normal vector of the plane.			
	$\binom{1}{8} \circ \binom{2}{-1} = 0$			
	$\binom{3}{2}\binom{1}{3}$			
	\Rightarrow The line and the plane are parallel.			
	(a) g_a in E:			
	$L\ddot{o}se(2(0 + \lambda) - (1 + \lambda A) + 3(1 + 2\lambda) = 5, \lambda)$			
	$\left(-3 \right)$			
	$\rightarrow \left\{\lambda = \frac{-3}{A-B}\right\}$			
	Intersection point Sa:			
	$Vektor((0 + \lambda, 1 + \lambda A, 1 + \lambda \cdot 2))$			
	$\left(\frac{3}{-A+8} \right)$			
	Ersetze: $3 \cdot \frac{A}{A+A} + 1$			
	-A+8			
	1. 6			
	Ersetze: $\begin{pmatrix} \frac{3}{-A+8} \\ 3 \cdot \frac{A}{-A+8} + 1 \\ 1 + \frac{6}{-A+8} \end{pmatrix}$			
	$\left(\begin{array}{c}1+\frac{6}{-A+8}\right)$ No solution for A=8, as the denominator becomes 0.			
	No solution for A=8, as the denominator becomes 0.			
	No solution for A=8, as the denominator becomes 0. Skalarprodukt({1,8,2}, {2,-1,3})			
	No solution for A=8, as the denominator becomes 0.			