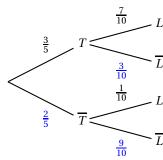
∽ Corrigé du baccalauréat ES La Réunion juin 2005 ∾

EXERCICE 1
Commun à tous les candidats

5 points

1.



- **2. a.** On a $p(T \cap L) = p(T) \times p_T(L) = \frac{3}{5} \times \frac{7}{10} = \frac{21}{50} = \frac{42}{100} = 0,42.$
 - **b.** D'après la loi des probabilités totales :

$$p(L) = p(T \cap L) + p\left(\overline{T} \cap L\right).$$

$$p\left(\overline{T} \cap L\right) = p\left(\overline{T}\right) \times p_{\overline{T}}(L) = \frac{2}{5} \times \frac{1}{10} = \frac{2}{50} = \frac{4}{100} = 0,04.$$

Donc
$$p(L) = p(T \cap L) + p(\overline{T} \cap L) = 0,42 + 0,04 = 0,46.$$

c. On a
$$p(\overline{T} \cap \overline{L} \cap) = p_{\overline{T}}(\overline{L}) = \frac{2}{5} \times \frac{9}{10} = \frac{18}{50} = \frac{36}{100} = 0,36.$$

3. On a
$$p_L(T) = \frac{p(L \cap T)}{p(L)} = \frac{p(T \cap L)}{p(L)} = \frac{0.42}{0.46} \frac{42}{46} = \frac{21}{23}$$
.

4. a. Achat des deux appareils : dépense : $(500 + 200) \times 0,75 = 175 \times 3 = 525 \in$.

Achat du téléviseur seul : dépense : 500 × 0,85 = 425 €.

Achat du lecteur de DVD seul : dépense : 200 × 0,85 = 170 €.

Aucun achat : dépense : 0 €.

b.

D	525	425	170	0
p(D)	0,42	0,18	0,04	0,36

- **c.** On a $E(D) = 525 \times 0,42 + 425 \times 0,18 + 170 \times 0,04 + 0 \times 0,36 = 303,80.$
- **d.** Le résultat précédent donne la moyenne d'achat d'un client quelconque sur un grand nombre de visiteurs. En supposant ce résultat vrai pour 80 personnes le chiffre d'affaires espéré sera de :

 $80 \times 303, 80 = 24304 \in$.

EXERCICE 2
Commun à tous les candidats

4 points

- **1.** Il faut résoudre l'inéquation : $0.98^n \le 0.5 \iff n \ln 0.98 \le \ln 0.5 \iff n \ge \frac{\ln 0.5}{\ln 0.98}$. Or $\frac{\ln 0.5}{\ln 0.98} \approx 34.3$: il faut attendre 35 ans.
- **2.** Soit t ce pourcentage; le prix est multiplié par 1 + t puis par 1 t soit finalement par $1 t^2$: il a donc baissé.
- **3.** Soit *t* ce taux d'accroissement moyen sur les 40 ans; on a donc :

$$(1+t)^{40} = 2 \iff 1+t=2^{\frac{1}{40}} \iff t=2^{\frac{1}{40}}-1 \approx 0,01748 \text{ soit environ } 1,75\%.$$

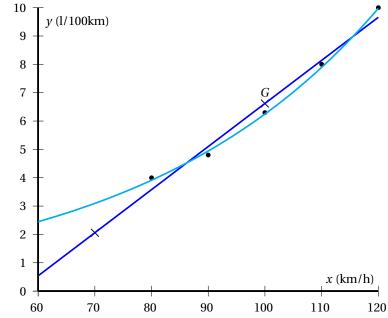
4.
$$(e^x)^2 \times e^{3x-1} = e^{2x} \times e^{3x-1} = e^{2x+3x-1} = e^{5x-1} = e^{5x} \times e^{-1} = \frac{e^{5x}}{e}$$
.

- 5. Réponse D car $\ln e^{-2} = -2$.
- **6.** Si x+3>0, soit x>-3, $\ln(x+3)<\ln 6 \iff x+3<6 \iff x<3$. Les nombres solutions sont les réels de l'intervalle] -3; 3[.
- 7. L'intégrale est égale à $\left[\frac{x^3}{3}\right]_1^4 = \frac{4^3}{3} \frac{1^3}{3} = \frac{64 1}{3} = \frac{63}{3} = 21$.
- **8.** La valeur moyenne de la fonction sur l'intervalle [1; 3] est égale : $\frac{1}{3-1} \int_{1}^{3} \frac{1}{x} dx = \frac{1}{2} [\ln x]_{1}^{3} = \frac{1}{2} (\ln 3 \ln 1) = \frac{\ln 3}{2} = \ln 3^{\frac{1}{2}} = \ln \sqrt{3}.$

EXERCICE 3 5 points Candidats n'ayant pas suivi l'enseignement de spécialité

1. Si la consommation était proportionnelle à la vitesse d'après les éléments de la première colonne le coefficient multiplicateur (de bas en haut) serait égal à 20 : ce n'est pas le cas.

2. a.



- **b.** On a $\frac{4+4,8+6,3+8+10}{5} = \frac{33,1}{5} = 6,62$. $\frac{80+90+100+110+120}{5} = \frac{500}{5} = 100$. On a donc G(100;6,62).
- **c.** La calculatrice donne y = 0,152x 8,58 comme droite d'ajustement affine de y en x par la méthode des moindres carrés.

On a déjà le point G; on peut utiliser le point de coordonnées (70; 2,06)

- **d.** Avec x = 130, on obtient $y = 0,158 \times 130 8,58 = 11,96$.
- 3. z = 0.0234x 0.5080.
 - **a.** Comme $z = \ln y$ et z = 0.0234x 0.5080, on a donc: $\ln y = 0.0234x 0.5080 \iff y = e^{0.0234x 0.5080}$, soit $y = e^{0.0234x} \times e^{-0.5080}$. Or $e^{-0.5080} \approx 0.6017$, donc $y = 0.6017e^{0.0234x}$.

- **b.** Voir la courbe ci-dessus.
- **c.** Avec x = 130, on obtient avec cet ajustement : $y = 0.6017e^{0.0234 \times 130} \approx 12,60$, soit environ 12,6 l aux 100 km.
- **4.** L'ajustement exponentiel est plus proche de la réalité des mesures que l'ajustement linéaire; 12,6 est donc la consommation la plus probable.

EXERCICE 3 5 points Candidats ayant suivi l'enseignement de spécialité

- 1. **a.** $u_0 = 1500$;
 - $u_1 = 1500 \times 0,9 + 100 = 1350 + 100 = 1450$;
 - $u_2 = 1450 \times 0,9 + 100 = 1305 + 100 = 1405.$
 - $u_1 u_0 = 50$ et $u_2 u_1 = 45$: la suite n'est pas arithmétique.
 - $\frac{u_1}{u_0} \approx 0,967$ et $\frac{u_2}{u_1} \approx 0,969$: la suite n'est pas géométrique.
 - **b.** Enlever $10\,\%$ à l'effectif c'est le multiplier par 0,9, donc d'une année sur l'autre on multiplie l'effectif par 0,9 et on l'augmente de 100, soit

$$u_{n+1} = 0,9u_n + 100.$$

- **2. a.** Pour tout entier naturel n, $v_{n+1} = u_{n+1} 1000 = 0$, $9u_n + 100 1000 = 0$, $9u_n 900 = 0$, $9(u_n 1000) = 0$, $9v_n$.
 - L'égalité $v_{n+1} = 0.9v_n$ vraie pour tout naturel montre que la suite v_n est géométrique de raison 0.9 de premier terme $v_0 = u_0 1000 = 1500 1000 = 500$.
 - **b.** On sait qu'alors quel que soit le naturel n, $v_n = 500 \times 0.9^n$.

Or
$$v_n = u_n - 1000 \iff u_n = v_n + 1000 = 500 \times 0,9^n + 1000$$
.

- **c.** Comme 0 < 0, 9 < 1, on sait que $\lim_{n \to +\infty} 0, 9^n = 0$, donc $\lim_{n \to +\infty} u_n = 1000$.
- **3.** Pour tout entier naturel n, $u_{n+1} u_n = 500 \times 0, 9^{n+1} + 1000 (500 \times 0, 9^n + 1000) = 500 \times 0, 9^{n+1} 500 \times 0, 9^n + 1000 +1000 = 500 \times 0, 9^n (0, 9-1) =$

$$-0.1 \times 500 \times 0.9^n = -50 \times 0.9^n$$
.

Comme 0,5 > 0 et $0,9^n > 0$ quel que soit le naturel n, on a donc pour tout n, $u_{n+1} - u_n < 0$: la suite u est donc décroissante.

4. Il faut donc trouver n tel que $u_n < 1500 - 300 \iff u_n < 1200$, soit :

$$500 \times 0.9^{n} + 1000 < 1200 \iff 500 \times 0.9^{n} < 200 \iff$$

$$0.9^n < \frac{200}{500} \iff 0.9^n < 0.4 \iff \text{(par croissance de la fonction logarithme népérien)} \quad n \ln 0.9 < \ln 0.4 \iff n > \frac{\ln 0.4}{\ln 0.9}.$$

Or $\frac{\ln 0.4}{\ln 0.9} \approx 8.7$. Il faut donc au moins n = 9. L'entreprise ne sera plus en sur-effectif à partir de 2014.

EXERCICE 4 Commun à tous les candidats

\mathbf{r}	• 4
h	points
v	DUIIII

x	0	$\frac{1}{e}$		1 +∞
f'(x)		+ 0	-	_
f(x)		e ∞	-∞	+∞

1. • Sur]0 ; 1[\cup [1 ; + ∞ [la fonction f est dérivable et sur cet ensemble :

$$f'(x) = -\frac{\ln x + x \times \frac{1}{x}}{(x \ln x)^2} = -\frac{\ln x + 1}{(x \ln x)^2}.$$

Comme $(x \ln x)^2 > 0$, le signe de f'(x) est celui de $-(\ln x + 1)$:

 $--(\ln x + 1) > 0 \iff -1 > \ln x \iff e^{-1} > x \iff x < e^{-1}$: la fonction est donc croissante sur $10: e^{-1}[:$

 $--(\ln x + 1) < 0 \iff -1 < \ln x \iff e^{-1} < x \iff x > e^{-1}$: la fonction est donc décroissante sur $]e^{-1}$; 1[et sur]1; + ∞ [.

 $--(\ln x + 1) < 0 \iff x = e^{-1} : f'(e^{-1}) = 0;$ donc $f(e^{-1})$ est un maximum de la fonction; $f(e^{-1}) = \frac{1}{e^{-1} \ln e^{-1}} = -\frac{1}{\frac{1}{e}} = -e.$

- Comme $\lim_{x\to 0} x \ln x = 0$, $\lim_{x\to 0} f(x) = -\infty$. Comme $\lim_{x\to +\infty} x \ln x = +\infty$, $\lim_{x\to +\infty} f(x) = 0$.

2. D'après le résultat précédent \mathscr{C} a une asymptote verticale d'équation x=0 et une asymptote horizontale y = 00 au voisinage de plus l'infini.

3. a. Une équation de la tangente est : $y - f\left(\frac{1}{e}\right) = f'\left(\frac{1}{e}\right)\left(x - \frac{1}{e}\right)$.

$$f'\left(\frac{1}{e}\right) = -\frac{\ln\frac{1}{e} + 1}{\left(\frac{1}{e}\ln\frac{1}{e}\right)^2} = -\frac{-\ln e + 1}{\left(-\frac{1}{e}\ln e\right)^2} = 0.$$

$$f\left(\frac{1}{e}\right) = \frac{1}{\frac{1}{e} \times \ln\frac{1}{e}} = \frac{1}{\frac{1}{e} \times (-1)} = -e.$$

Donc une équation de la tangente est : $y - (-e) = 0 \left(x - \frac{1}{e}\right) \iff y = -e$.

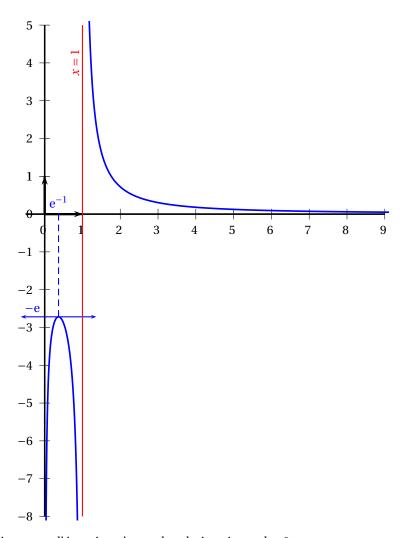
b. Une équation est : y - f(e) = f'(e)(x - e).

$$f'(e) = -\frac{\ln e + 1}{(e \ln e)^2} = -\frac{2}{e^2} = -2e^{-2}.$$

$$f(e) = \frac{1}{e \ln e} = \frac{1}{e} = e^{-1}.$$

$$y - = -2e^{-2}(x - e \iff y = -2e^{-2}x + e^{-1} + 2e^{-1} \iff y = -2e^{-2}x + 3e^{-1}.$$

4.



- **a.** Graphiquement l'équation n'a pas de solution si -e < k < 0;
- **b.** Graphiquement l'équation a une solution unique si $k=-\mathrm{e}$ ou si $0 < k < +\infty$;
- **c.** Graphiquement l'équation a deux solutions distinctes si k < -e.