ം Corrigé du baccalauréat ES Liban 6 juin 2005 രം

EXERCICE 1 5 points

Commun à tous les candidats

- **1. a.** La fonction g croit de g(0) = 0 à g(1) = 2, puis décroit de g(1) à $g(3,5) \approx 1,2$.
 - **b.** g'(0) est le coefficient directeur de la droite (OA) égal à : $\frac{2-0}{0,5-0} = 4$; g'(1) = 0 car la tangente en B est horizontale.
 - **c.** On lit C(1,75; 1,75).
 - **d.** y = x est une équation de la droite (OC). La courbe est au dessus de la droite (OC) pour $0 \le x < 1,75$.
- **2.** $\begin{cases} 0 & \leqslant x & 1 \\ 0 & \leqslant y & g(x) \end{cases}$. Soit D le point de coordonnées (0,25; 1).

L'aire de S est supérieure à celle du polygone ODBI qui se décompose en :

- l'aire du trapèze de base [OI] et de hauteur 1, dont l'aire est : $\frac{1+0.75}{2} \times 1 = 0.875$ et
- l'aire du triangle de côtés 1 et 0,75 dont l'aire est égale à : $\frac{1 \times 0,75}{2} = 0,375$.

On a donc 0.875 + 0.375 < S, soit 1.15 < S.

L'aire de S est inférieure à celle du polygone OABI qui est égale à : $\frac{1+0.5}{2} \times 2 = 1.5$.

On a donc en unités d'aire : 1,15 < S < 1,5, soit en centimètres carrés : 4,6 < S < 6.

- **3.** La courbe nº 3 ne peut convenir : elle est la courbe d'une fonction croissante puis décroissante, donc sa dérivée qui est *g* devrait être positive puis négative, ce qui n'est pas le cas.
 - La courbe n^0 1 ne peut convenir : le nombre dérivé de la fonction devrait être nul puisque la primitive doit s'annuler en 0. Reste donc la courbe n^0 2.

EXERCICE 2 5 points

Pour les candidats n'ayant pas suivi l'enseignement de spécialité

Partie A

- 1. De 2000 à 2004 l'indice a doublé; il y avait donc en $2004 : 2 \times 2040 = 4080$.
- 2. Le pourcentage d'augmentation du nombre d'abonnés entre 2003 et 2004 est égal à :

$$\frac{200 - 160}{160} \times 100 = \frac{40}{160} \times 100 = 25\%.$$

- **3.** La calculatrice donne comme équation de la droite de régression de y en x par la méthode des moindres carrés : y = 24,8x + 66.
- **4.** 2005 correspond au rang 6, d'où $y = 24, 8 \times 6 + 66 = 214, 8$. On peut donc prévoir en 2005 214, $8 \times \frac{2040}{100} \approx 4382$ abonnés.

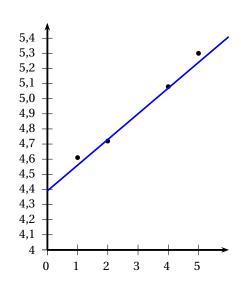
2011 correspond au rang 11, d'où $y = 24,8 \times 11 + 66 = 338,8$. On peut donc prévoir en 2011 338,8 × $\frac{2040}{100} \approx 6912$ abonnés.

Partie B

1.

x_i	1	2	3	4	5
$Y_i = \ln y_i$	4,61	4,72	4,87	5,08	5,30

2.



3. On a donc $Y = \ln y = 0.17x + 4.39 \iff y = e^{0.17x + 4.39} = e^{4.39} \times e^{0.17x}$. Or $e^{4.39} \approx 80.6$, donc $y = 80.6 \times e^{0.17x}$.

Le nombre d'abonnés est donc égale à $n = 80.6 \times \frac{2040}{100} e^{0.17x} \approx 1645 e^{0.17x}$.

- 4. Avec ce modèle:
 - 2005 correspond au rang 6, d'où $n\approx 1645 {\rm e}^{0,17\times 6}\approx 4561$,9. On peut donc prévoir en 2005 4562 abonnés.
 - 2011 correspond au rang 11, d'où $n \approx 1645 \mathrm{e}^{0.17 \times 11} \approx 10673$, 1. On peut donc prévoir en 2011 10673 abonnés.

EXERCICE 2 5 points Pour les candidats ayant suivi la spécialité mathématique

1. Voir le document réponse.

- Si x = 1, alors z = 3y: la projection orthogonale dans le plan (yOz) est la droite d'équation z = 3y;
- Si $x = \frac{3}{2}$, alors $z = \frac{9}{2}y$: la projection orthogonale dans le plan (yOz) est la droite d'équation $z = \frac{9}{2}y$;
- Si x = 2, alors z = 6y: la projection orthogonale dans le plan (yOz) est la droite d'équation z = 6y.
- **2. a.** Si x = k, avec $k \in \mathbb{R}$, les coordonnées des points de la courbe de niveau vérifient :

$$\begin{cases} x = k \\ z = 3xy \end{cases} \iff \begin{cases} x = k \\ z = 3ky \end{cases} : \text{c'est dans le plan d'équation } x = k \text{ l'équation de la}$$
 droite d'équation $z = 3ky$.

b. Si z = k, avec $k \in \mathbb{R}$, les coordonnées des points de la courbe de niveau vérifient :

$$\begin{cases} z = k \\ z = 3xy \end{cases} \iff \begin{cases} z = k \\ k = 3xy \end{cases} \iff \begin{cases} z = k \\ y = \frac{k}{3x} \end{cases} \text{ (avec } x \text{ non nul) : c'est dans le}$$

plan d'équation z = k l'équation de l'hyperbole d'équation $y = \frac{k}{3x}$.

- 3. La courbe \mathcal{C}_1 contient le point de coordonnées (1; 1) : on a donc d'après la question précédente $k = 3 \times 1 \times 1 = 3$;
 - La courbe \mathscr{C}_2 contient le point de coordonnées (1; 2) : on a donc d'après la question précédente $k = 3 \times 1 \times 2 = 6$;
 - La courbe & contient le point de coordonnées (1; 3) : on a donc d'après la question précédente $k = 3 \times 1 \times 3 = 9$;
- **4. a.** Les coordonnées de A' sont (2; 1), donc A(2; 1; z), mais comme $A' \in \mathcal{C}_2$, d'après la question précédente, k = 6, donc A(2; 1; 6).
 - **b.** Le projeté A'' de A sur le plan (yOz) a pour coordonnées (0; 1; 6), soit dans le plan (yOz)comme coordonnées (1; 6). Voir la figure à la fin.
- **5. a.** $A(2; 1; 6) \in \mathscr{P} \iff 3 \times 2 + 6 \times 1 6 6 = 0 \iff 12 12 = 0$: vraie.
 - **b.** Un point de la courbe de niveau d'abscisse 2 a pour coordonnées x = 2 et z = 6y. Or $3 \times 2 + 6y - 6y - 6 = 0$ est vraie, donc le plan \mathscr{P} contient la courbe de niveau d'abscisse 2.
 - c. Soit un point M(x; y; z) un point de l'intersection; ses coordonnées vérifient donc les les équations des deux surfaces;

$$\begin{cases} z &=& 3xy \\ 3x+6y-z-6 &=& 0 \end{cases} \iff \begin{cases} z &=& 3xy \\ 3x+6y-3xy-6 &=& 0 \end{cases}.$$

Soit avec l'indication fournie:

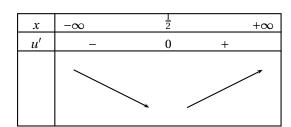
Soit avec l'indication fournie:
$$\begin{cases} z &= 3xy \\ (x-2)-y(x-2) &= 0 \end{cases} \iff \begin{cases} z &= 3xy \\ (x-2)(1-y) &= 0 \end{cases}$$
 On a donc deux possibilités:

- $\begin{cases} z = 3xy \\ (x-2) = 0 \end{cases} \iff \begin{cases} z = 6y \\ x = 2 \end{cases} : \text{on reconnait la courbe de niveau d'abscisse}$
- $\left\{ \begin{array}{lll} z & = & 3xy \\ (1-y) & = & 0 \end{array} \right. \iff \left\{ \begin{array}{lll} z & = & 3x \\ y & = & 1 \end{array} \right. : \text{on reconnait la courbe de niveau d'ordonnée}$ 1 qui est une droite.

EXERCICE 3 Commun à tous les candidats

5 points

1.



2. a. L'affirmation est fausse car sur l'intervalle]-1; $\frac{1}{2}[$ on a u(x) < 0; la fonction f n'est donc pas définie sur cet intervalle.

L'affirmation est vraie car la fonction e^u est définie quelle que soit la fonction u définie sur

b. Les fonctions ln et exp étant croissantes les variations des fonctions f et g sont les mêmes que celles de la fonction u.

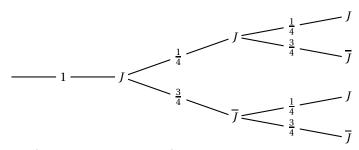
Seule différence pour la fonction f, elle n'est pas définie sur l'intervalle]-1; $\frac{1}{2}[$.

- **c.** On sait que $\lim_{\substack{x \to 2 \ x > 2}} u(x) = 0$, donc $\lim_{\substack{x \to 2 \ x > 2}} \ln[u(x)] = -\infty$.
- **d.** $g(x) = 1 \iff e^{u(x)} = 1 \iff u(x) = 0$. Le tableau d'informations indique deux solutions : -1 et 2.
- **3. a.** On a $g'(x) = u'(x) \times e^{u(x)}$; en particulier $g'(2) = u'(2) \times e^{u(2)} = 3 \times e^0 = 3 \times 1 = 3$. Donc la tangente à la courbe représentative de la fonction g au point d'abscisse 2 est parallèle à la droite d'équation y = 3x.
 - **b.** Le nombre f'(-2):

On a pour u(x) > 0, $f'(x) = \frac{u'(x)}{u(x)}$, donc en particulier $f'(-2) = \frac{-5}{4}$.

EXERCICE 4 6 points
Commun à tous les candidats

1. a.



On obtient respectivement: 3, 1,5, 1,5, 0 point(s).

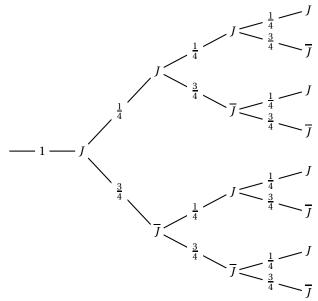
- **b.** Il peut remplir $4 \times 4 = 16$ grilles différentes
- **c.** La probabilité de ne faire aucune faute sur ses trois réponses est $\left(\frac{1}{4}\right)^2 = \frac{1}{16}$.
- **d.** La probabilité de faire deux fautes est égale à $\frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$.

e.

point(s)	3	1,5	0
probabilité	$\frac{1}{16}$	<u>6</u> 16	<u>9</u> 16

L'espérance de cette loi est égale à : $3 \times \frac{1}{16} + 1, 5 \times \frac{6}{16} + 0 \times \frac{9}{16} = \frac{3+9}{16} = \frac{12}{16} = \frac{3}{4} = 0,75$ (point)

2. a.



Il peut obtenir 4 points avec 4 bonnes réponses, 2,5 points avec trois bonnes réponses, 1 point avec deux bonnes réponses et 0 point avec moins de deux bonnes réponses.

- **b.** Il peut remplir $4 \times 4 \times 4 = 64$ grilles différentes.
- **c.** La probabilité de ne faire aucune faute est égale à $\left(\frac{1}{4}\right)^3 = \frac{1}{64}$.
- **d.** La probabilité de faire trois fautes est égale à $\left(\frac{3}{4}\right)^3 = \frac{27}{64}$.

e.

point(s)	4	2,5	1	0
probabilité	$\frac{1}{64}$	9 64	9 64	27 64

L'espérance mathématique est égale à : $4 \times \frac{1}{64} + 2$, $5 \times \frac{9}{64} + 1 \times \frac{27}{64} + 0 \times \frac{27}{64} = \frac{4+22,5+27}{64} = \frac{53,5}{64} \approx 0,84$ (point).

3. Lucien aura 1 point. En terme de probabilité Lucien aura plus de point que Nicolas qui en aura plus que Quentin.

ANNEXE

DOCUMENT RÉPONSE À RENDRE AVEC LA COPIE

(Exercice 2 spécialité)

